
遏制数据中心衰退的三点建议
不是只有经济学家才能观察出,世界经济正面临着放缓衰退的势头;也不是只有那些天才或预言家才能断言,数据中心的预算也很有可能缩水。不管数据中心的预算会不会缩水,未雨绸缪总是没错的。行动起来,降低成本,这将是明智之举,Gartner公司的副总裁及研究员肯?麦基如是说。
早在去年, Gartner公司就提出了备战经济衰退的必要性。从那时起,部分地区局势已经出现了明显恶化趋势。
“我们用来研究的依据(如专家已经预测到国内生产总值可能会出现经济衰退)已经恶化到一定程度,这一因素有力地说服我们,是时候准备为客户削减IT成本了!”麦基说到。
麦基建议聘用专业工作人员制定IT成本削减的措施,并任命一名高级核数师(或会计师团队)专职记录项目组的表现。同时,每周召开例会向高级管理人员报告进展情况,与法律代表协商、咨询法律问题,使其在遇到可能会出现问题时,表现更加得心应手。这些削减成本的措施,确保不会导致增加贵公司的法律责任的负担。
因此,现在是时候采取措施解决数据中心衰退的现象,问题是你应该在哪些方面削减成本?
引入虚拟化
数据中心成本最重要的是电,没有之一(包括使用计算设备和冷却系统的电力)。虚拟化起到了关键的作用,可以减少整体用电量,因其减少了所需的电源和冷却的物理机器的数量。
承载虚拟机的单一物理服务器有时可代替两个、三个(有时更多)个未充分利用的物理服务器。虽然一台利用率在80
%物理服务器的用电量超过利用率在20 %的物理服务器
,但效能远远比20%的高得多,因为低利用率的服务器随附的四个磁盘驱动器,所以需要四个低效电源运行四个服务器,依此类推结果可想而知。
虚拟化也通过减少硬件的数量来节约成本,有些不必要的硬件往往成为累赘。使用越少的服务器,那么当它们寿终正寝时,更换的次数也会随之变少。幸亏有诸如微软和VMware等公司研制的先进虚拟机管理软件,让我们在设置和配置他们所花费的时间(以及相关的成本)远小于物理服务器管理。
其实,不仅服务器需要虚拟化。对于服务器受用的理论,存储系统也可兼而得之:存储虚拟化可以通过减少过度供应、减少磁盘和其他必须供电和冷却存储介质的数量、购置和更新来降低成本。
引入自动化
数据中心自动化需要大量的投资,但它同时也有显着的成本节约。在衰退时期应该谨慎看待一些因素,比如适中的价格区间和相对较快的投资回收期等。包括补丁管理、安全警报(反过来可能使远程操作成本降低)和一些劳动力繁复的任务,如密码重置。譬如,当一个企业中有大量员工需要使用IT来处理密码问题时,语音身份验证系统就可以显着降低这种密码重置所带来的能耗。此类系统会自动验证用户的身份以及重置相关密码。
任意一款优秀的自动化软件,总会给人们带来额外的惊喜。它可以降低处理任务所花费的工时数,这样,管理人员可以灵活选择是该降低数据中心的人力资源成本,还是将员工重新分配到其他任务中去,进一步落实削减成本系统,从创造一个虚拟的循环过程。
应用程序的整合
数据中心运行越多的应用程序,管理它们就会更加复杂、昂贵。因此,假设整合成尽可能少的几个应用程序,财政预算就会减少一大笔,当然,应用程序和所需的任务必须匹配上。如果这些都是开源的应用程序(有可能意味着是基于Linux的),就会有显着储存的潜在性,无论在操作系统和应用程序的许可证方面的费用,还是CALS①。
记住,技术支持的成本还在,微软等大型厂商的案例表明,开源软件的所有权的总成本不低于封闭源代码。但最起码,你可能能够从有封闭源代码的厂商使用开放源交换到更好的交易筹码。
无论是在宏观层面上看整个数据中心的运营方式的结构,从微观层面上的已有的些许变化,都会给我们很大的启发。例如,你可以就系统可用性设定自己“五个九”的目标,前提是评估一下是否真的有必要。要是达到这一目标的99.9 %,会降低多少成本?对整体的业务的盈利能力有什么影响?等等。
如果确定只有少数几个应用程序能保证99.999%的正常运行时间,那么就要考虑此数据中心是否是对于这些应用程序是否适用。如果低于此级别的服务,一个专门的应用服务提供商可能能够以固定的较低成本补偿给每个用户一些费用。反之,提供不必要的冗余是没有意义的,只会把钱付诸东流。
另外,数据中心运行的时长比本来需要的时间多。这时候便需要远程管理工具,你会发现在某些时候无人管理的数据中心突发情况,就需要工作人员“随叫随到”远程问题理清,一切尽在掌控之中。
最后, 有几个IT管理框架最佳案例值得一提,如IT基础设施库(IT Infrastructure
Library,ITIL)和Microsoft操作框架(Microsoft Operations Framework,MOF
)。框架与操作协调是一个中等长期的项目,但它们的目的是确保所有的IT服务(包括与数据中心相关的项目)尽可能高效地交付。
如果你能做到这些,为确保您的数据中心能够适应任何经济放缓导致的恶果,接下来还有很长的路要走。路漫漫其修远兮,吾将上下而求索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10