
1 replication
rep 函数能把输入的参数重复数次。另一个相关函数replicate 则能调用表达式数次。大多数情况下它们基本相等,只有当使用随机数时才会出现不同。现在,假定生成均匀分布随机数的runif 函数不是矢量化的,那么rep 函数每次都将重复相同的随机数,而replicate 每次的结果都不相同(由于历史的原因,其参数顺序竟然是从后到前的,这有点烦人):
rep(runif(1),5)
## [1] 0.3322252 0.3322252 0.3322252 0.3322252 0.3322252
replicate(5,runif(1))
## [1] 0.283310499 0.008578707 0.146623782 0.415137337 0.338364811
在更为复杂的例子中,replicate 会大显身手。例如,在蒙特卡罗(Monte Carlo)分析中——replicate 最主要的用途,你需要重复固定次数的分析过程且每次迭代都是相互独立的。
下一个例子将分析某人上下班时使用不同交通工具所花费的时间。这有些复杂,不过这是为了展示replicate 的作用,它非常适合于这种场景。
time_for_commute 函数用sample 随机挑选一种交通工具(小汽车、公交车或自行车),然后用rnorm 或rlnorm 找到一个正态分布或对数正态分布1 的行程时间(具体参数取决于所选的交通工具)。
time_for_commute <- function()
{
mode_of_transport <- sample(
c("car", "bus", "train", "bike"),
size = 1,
prob = c(0.1, 0.2, 0.3, 0.4)
)
time <- switch(
mode_of_transport,
car = rlnorm(1, log(30), 0.5),
bus = rlnorm(1, log(40), 0.5),
train = rnorm(1, 30, 10),
bike = rnorm(1, 60, 5)
)
names(time) <- mode_of_transport
time
}
switch 语句的存在使得这个函数很难被向量化。这意味着:为了找到上下班时间的分布,我们需要多次调用time_for_commute 来生成每天的数据。replicate 使我们能即刻进行向量化:
replicate(5,time_for_commute())
## bus bike train bus bike
## 21.79452 60.34375 29.05779 45.15100 57.18907
2 遍历列表
现在,你已经注意到向量化在R 中无处不在。事实上,你会很自然地选择编写向量化代码。因为它使代码看上去更精简,且与循环相比它的性能更好。不过,在某些情况下,保持矢量化意味着控制代码的方式不太自然。此时,apply 系列的函数能更自然地让你进行“伪矢量化”2。
最简单且常用的成员函数是lapply,它是“list apply”的缩写。lapply 的输入参数是某个函数,此函数将依次作用于列表中的每个元素上,并将结果返回到另一个列表中。
# 构建质因数分解列表:
prime_factors<-list(
two=2,
three=3,
four=c(2,2),
five=5,
six=c(2,3),
seven=7,
eight=c(2,2,2),
nine=c(3,3),
ten=c(2,5)
)
head(prime_factors)
## $two
## [1] 2
##
## $three
## [1] 3
##
## $four
## [1] 2 2
##
## $five
## [1] 5
##
## $six
## [1] 2 3
##
## $seven
## [1] 7
# 以向量化的方式在每个列表元素中搜索唯一值是很难做到的。我们可以写一个for 循环来逐个地检查元素,但这种方法有点笨拙:
unique_primes<-vector("list",length(prime_factors))
for(i in seq_along(prime_factors))
{
unique_primes[[i]]<-unique(prime_factors[[i]])
}
names(unique_primes)<-names(prime_factors)
unique_primes
## $two
## [1] 2
##
## $three
## [1] 3
##
## $four
## [1] 2
##
## $five
## [1] 5
##
## $six
## [1] 2 3
##
## $seven
## [1] 7
##
## $eight
## [1] 2
##
## $nine
## [1] 3
##
## $ten
## [1] 2 5
# lapply 大大简化了这种操作,你无需再用那些陈腔滥调的代码来进行长度和名称检查:
lapply(prime_factors,unique)
## $two
## [1] 2
##
## $three
## [1] 3
##
## $four
## [1] 2
##
## $five
## [1] 5
##
## $six
## [1] 2 3
##
## $seven
## [1] 7
##
## $eight
## [1] 2
##
## $nine
## [1] 3
##
## $ten
## [1] 2 5
# 如果函数的每次返回值大小相同,且你知其大小为多少,那么你可以使用lapply 的变种vapply。vapply 的含义是:应用于(apply)列表而返回向量(vector)。和前面一样,它的输入参数是一个列表和函数,但vapply 还需要第三个参数,即返回值的模板。它不直接返回列表,而是把结果简化为向量或数组:
vapply(prime_factors,length,numeric(1))
## two three four five six seven eight nine ten
## 1 1 2 1 2 1 3 2 2
如果输出不能匹配模板,那么vapply 将抛出一个错误——vapply 不如lapply 灵活,因为它输出的每个元素必须大小相同且必须事先就知道。
还有一种介于lapply 和vapply 之间的函数sapply,其含义为:简化(simplfy)列表应用。与其他两个函数类似,sapply 的输入参数也是一个列表和函数。它不需要模板,但它会尽可能地把结果简化到一个合适的向量和数组中。
prime_factors<-list(
two=2,
three=3,
four=c(2,2),
five=5,
six=c(2,3),
seven=7,
eight=c(2,2,2),
nine=c(3,3),
ten=c(2,5)
)
sapply(prime_factors,unique)
## $two
## [1] 2
##
## $three
## [1] 3
##
## $four
## [1] 2
##
## $five
## [1] 5
##
## $six
## [1] 2 3
##
## $seven
## [1] 7
##
## $eight
## [1] 2
##
## $nine
## [1] 3
##
## $ten
## [1] 2 5
sapply(prime_factors,length)
## two three four five six seven eight nine ten
## 1 1 2 1 2 1 3 2 2
sapply(prime_factors,summary)
## two three four five six seven eight nine ten
## Min. 2 3 2 5 2.00 7 2 3 2.00
## 1st Qu. 2 3 2 5 2.25 7 2 3 2.75
## Median 2 3 2 5 2.50 7 2 3 3.50
## Mean 2 3 2 5 2.50 7 2 3 3.50
## 3rd Qu. 2 3 2 5 2.75 7 2 3 4.25
## Max. 2 3 2 5 3.00 7 2 3 5.00
# 匿名函数传给lapply
complemented <- c(2, 3, 6, 18)
lapply(complemented,rep.int,times=4)
## [[1]]
## [1] 2 2 2 2
##
## [[2]]
## [1] 3 3 3 3
##
## [[3]]
## [1] 6 6 6 6
##
## [[4]]
## [1] 18 18 18 18
lapply(complemented,function(x) rep.int(4,time=x))
## [[1]]
## [1] 4 4
##
## [[2]]
## [1] 4 4 4
##
## [[3]]
## [1] 4 4 4 4 4 4
##
## [[4]]
## [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
在极个别的情况下,你可能需要循环遍历环境(而非列表)中每个变量。对此,你可以使用专门的函数eapply。当然,在最新版本的R 中,你也可以使用lapply:
env<-new.env()
env$molien<-c(1,0,1,0,1,1,2,1,3)
env$larry<-c("Really","leery","rarely","Larry")
eapply(env,length)
## $molien
## [1] 9
##
## $larry
## [1] 4
lapply(env,length)
## $molien
## [1] 9
##
## $larry
## [1] 4
rapply 是lapply 函数的递归版本,它允许你循环遍历嵌套列表。这是个特殊的要求,且如果事先使用unlist 将数据扁平化就会使代码变得更简单。
3 遍历数组
lapply 和它的小伙伴vapply 与sapply 都可用于矩阵和数组上,但它们的行为往往不是我们想要的。这三个函数把矩阵和数组看作向量,将目标函数作用于每个元素上(沿列往下移动)。而更为常见的是,当要把函数作用于一个数组时,我们希望能按行或列应用它们。下面的例子使用matlab 包,提供了对手语言所具备的功能。
library(matlab)
##
## Attaching package: 'matlab'
##
## The following object is masked from 'package:stats':
##
## reshape
##
## The following objects are masked from 'package:utils':
##
## find, fix
##
## The following object is masked from 'package:base':
##
## sum
(magic4<-magic(4))
## [,1] [,2] [,3] [,4]
## [1,] 16 2 3 13
## [2,] 5 11 10 8
## [3,] 9 7 6 12
## [4,] 4 14 15 1
magic 函数将创建一个f 方阵:n×n 的、从1 排到n2 的数字矩阵,其行数和列数相等:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25