
R语言-数组到矩阵的转换
1、问题:
有一个很大的三维数组,需要转换为一个矩阵,是否能在R中用循环语句或者其他方式实现?
三维数组(3, 2, 3)类似下面形式:
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
希望转换后的矩阵(6, 3)如下:
1 7 13
4 10 16
2 8 14
5 11 17
3 9 15
6 12 18
2、解答:
基于问题数据的特点,可直接用行组合就可以,避免使用循环计算,在进行大数据处理时可显著提高处理效率。
可以看到最终数据呈横向扩展,而与第3维数据的个数无关。
1、假定有数据:
> a <- array(1:18, dim=c(3,2,3))
> a
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
2、合成后的矩阵为:
>b<- rbind(a[1,,],a[2,,],a[3,,])
一句话搞定。
3、查看结果
> b
[,1] [,2] [,3]
[1,] 1 7 13
[2,] 4 10 16
[3,] 2 8 14
[4,] 5 11 17
[5,] 3 9 15
[6,] 6 12 18
4、使用更多数据测试:
> a <- array(1:24, dim=c(3,2,4))
> a
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
, , 4
[,1] [,2]
[1,] 19 22
[2,] 20 23
[3,] 21 24
> b<-rbind(a[1,,],a[2,,],a[3,,])
> b
[,1] [,2] [,3] [,4]
[1,] 1 7 13 19
[2,] 4 10 16 22
[3,] 2 8 14 20
[4,] 5 11 17 23
[5,] 3 9 15 21
[6,] 6 12 18 24
3、另外的方法
1、apply()
apply(x, 3, t)
apply()函数,可将一个任意函数“应用”到矩阵、数组、数据框的任何维度上。apply函数的使用格式为:
apply(x, MARGIN, FUN, ...)
其中,x为数据对象,MARGIN是维度的下标,FUN是由你指定的函数,而...则包括了任何想传递给FUN的参数。在矩阵或数据框中,MARGIN=1表示行,MARGIN=2表示列。
2、aperm()
(1)aperm() 函数,Transpose an array by permuting its dimensions and optionally resizingit.
Transpose变换顺序
permute 序列改变,重新排列一个数组
该函数意即改变数组的维度顺序,维度1,2,3按不同顺序进行变换。
(2)array()函数,用法array(data = NA, dim = length(data), dimnames = NULL)
array(aperm(x, c(2,1,3)), c(6,3))
将数组x维度改变(1->2,2->1,3->3)后:
aperm(x, c(2,1,3))
再变换成新的数组:
array(aperm(x, c(2,1,3)), c(6,3))
注意:
其实这样做有点多余,可直接应用数组变换:
array(x, c(6,3))
结果与上述方法结果一样。
如果是三维数量是4,则公式为:
array(x,c(6,4))
依此类推。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10