京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代正扑面而来
随着大数据在各个企业扎根应用,相应的商业模式也慢慢浮出水面。
在大数据时代,营销将会更多地依赖海量的数据,从而更精准地找到用户。根据来自不同平台的数据作进一步挖掘和分析,找到这些数据相对应的人群,再将这些群体进行个性化的分析、并以此展开个性化的营销服务。
大数据向传统行业延伸
大数据的发展从以Google、Amazon、Yahoo!为代表的互联网大公司,蔓延到越来越多的创业公司以及金融、电力、电信等各种传统行业,这些公司和行业在不同的维度进行数据挖掘和分析,创造出更多的商业模式和经济增长点。同时,包括美国在内的诸多国家,都将大数据管理上升到国家战略层面,从国家层面通盘考虑其发展战略。从目前国内外大数据发展历程和趋势来看,掌握海量有效数据和具有强大数据处理分析能力的公司和企业将走在大数据发展的前沿。为了掌握更多数据,各大企业均在抢占互联网入口,包括移动浏览器、搜索引擎、操作系统、应用商店等。
当前,关注企业级大数据解决方案的IBM[微博]、Oracle等公司已经提供了商业化的产品;基于自己业务和互联网特点的Google、百度、腾讯、阿里巴巴[微博]等公司都在构建自己的大数据体系;同时,一些研究机构或者学术机构,也开始投入更多的经历从事相关理论和实际研究。“大数据”中的数据主要包括“在线”大数据和“离线”大数据,虽然从事大数据研究和开发的公司及研究单位对于这些数据有不同的业务逻辑,但是大的处理技术基本类似,包括数据采集、导入和预处理、统计和分析、挖掘。
大数据商业模式初步形成
大数据在国内外各大企业中已经有了成熟和广泛的应用。作为中国最大的电子商务平台,淘宝有海量的商业数据,现今淘宝面临数据量大、内容多样、维度丰富(涵盖近百个不同行业的商品维度,五级商品类目体系、近十万个品牌)、源数据质量不高(非法交易、恶意评价、用于自定义属性)等问题。对于淘宝面临的挑战,分布式存储计算、实时计算、实时流处理、基于云计算的数据挖掘、数据可视化和数据产品实践等是应对大数据浪潮的关键技术。
对于中国最大的搜索公司百度,凭借入口优势,拥有了中国最大的消费者行为数据库,覆盖95%的中国网民,日均响应50亿次搜索请求,搜索市场占比达67%。百度副总裁王湛介绍,百度已经建成了包括百度指数、司南、风云榜、数据研究中心和百度统计在内的五大数据体系平台,帮助企业实时了解消费者行为、兴趣变化,以及行业发展状况、市场动态和趋势、竞争对手动向等信息,以便适时调整营销策略。
腾讯是在大数据时代下,最令人期待和遐想的一家互联网公司。腾讯更加完整的记录了人们在互联网上的行为轨迹和社会属性。根据腾讯披露的信息显示,截至目前,腾讯拥有超过8.254亿QQIM活跃账户,6亿的空间用户,5.4亿微博注册用户和5亿微信用户。这些海量信息汇聚在一起,就能够获取到用户的兴趣爱好、归属地、社会关系链等一系列有价值的信息。然后,利用大数据和关系链,腾讯就能为用户筛选、推荐最适合他的内容。
雅虎作为一个老牌互联网企业,在大数据领域有着深厚的技术积累和影响力。雅虎有全球最大的Hadoop集群,大约25000个节点,主要用于支持广告系统和个性化新闻系统。而且雅虎也是Hadoop开源社区最主要的贡献者,贡献率超过70%。另外,雅虎也非常注重在大数据其它领域的投资,其在中国刚刚收购了大数据分析公司智拓通达,完成了新CEO梅耶尔上任以来的首次真正意义上的海外收购。
通过海量的数据,还可以给用户提供更好的、更具个性化的服务。国内最大的门户新浪最近推出了新版的首页,最显着的变化,就是增加了一个“猜你喜欢”的栏目。新浪通过对微博上海量数据进行收集、挖掘,然后给每个用户推荐个性化的新闻。
文字、声音、图片以及用户的行为习惯和关系网络构成了互联网上这些庞大的数据资源,伴随着国内外互联网、移动互联网的大爆发,数据量也相应地剧增,而越发成熟的云计算带来的计算能力革命,使得对于这些大数据资源的挖掘处理以及商业变现成为可能。大数据的时代正扑面而来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27