
国内大数据应用潮起,发展形势稳好
大数据是继云计算、物联网之后IT产业面临又一次颠覆性的技术变革。权威数据显示,2012年大数据对全球IT开支直接或间接推动达960亿美元,而到2016年,这一数字预计将达到2320亿美元。据国内有关机构初步预算,未来中国大数据潜在市场规模有望达到近2万亿元,将给IT行业开拓了一个新的黄金时代。
分析人士指出,大数据时代来临,行业变革才刚刚开始,未来前景广阔。就目前发展来看,国内对大数据的应用领域还较为狭窄,主要集中在金融、物流、公共等三个领域。
公共领域:
交通司法等行业领衔大数据运用
目前我国在公共领域对大数据的运用主要集中在电力行业、智能交通、电子政务、司法系统等四个方面。
电力行业:大数据对该行业的应用主要体现在智能电网上,通过获取人们的用电行为信息,智能电网能够实现优化电的生产、分配以及消耗,有利于电网安全检测与控制(包括大灾难预警与处理、供电与电力调度决策支持和更准确的用电量预测)、客户用电行为分析与客户细分,电力企业精细化运营管理等多方面,实现更科学的电力需求管理。
智能交通:交通运输部今年7月份下发通知,将对公共交通信息化应用系统建设、相关支撑系统建设、数据资源与交换系统建设提供资金支持。在政策利好支撑下,可以从以下三方面掘金智能交通领域。一、从事城市交通系统建设、高速公路信息化建设等领域的上市公司。
电子政务:通过政府信息化,大数据能够提高政府决策的科学性和精准性,提高政府预测预警能力以及应急响应能力,节约决策的成本。以财政部门为例,基于云计算、大数据技术,财政部门可以按需掌握各个部门的数据,并对数据进行分析,做出的决策可以更准确、更高效。另外,也可以依据数据推动财政创新,使财政工作更有效率、更加开放、更加透明。
司法系统:公安市场大规模的信息化和装备投资产生了海量的非结构化数据,公安的实战应用是大数据的重要应用领域。
金融领域:
大数据所带来的社会变革已经深入到人们生活的各个方面,日常的出行、购物、运动、理财等等。金融业面临众多前所未有的跨界竞争对手,市场格局、业务流程将发生巨大改变。未来的金融业将开展新一轮围绕大数据的IT建设投资。
据悉,目前,中国的金融行业数据量已经超过100TB,非结构化数据迅速增长。分析人士认为,中国金融行业正在步入大数据时代的初级阶段。优秀的数据分析能力是当今金融市场创新的关键,资本管理、交易执行、安全和反欺诈等相关的数据洞察力,成为金融企业运作和发展的核心竞争力。
目前,以大数据为代表的新型技术将在两个层面改造金融业。宏源证券表示,一是金融交易形式的电子化和数字化,具体表现为支付电子化、渠道网络化、信用数字化,是运营效率的提升;二是金融交易结构的变化,其中一个重要表现便是交易中介脱媒化,服务中介功能弱化,是结构效率的提升。
伴随着大数据应用、技术革新及商业模式创新,金融业中的银行和券商也迎来巨大的转变。此外,腾讯、阿里巴巴等互联网企业也在凭借其强大的数据积累和客户基础,进军金融业,开拓新的盈利点,这也成为金融产品在线销售的一大推动力。
从银行业来看,业内人士表示,互联网环境改变了金融客户的行为习惯,并且促进交易信息透明化,交易成本显着降低。此外,交易行为和信息数据的掌握方拥有更多的话语权。在互联网技术的推动下,金融行业、互联网行业之间的界线日渐模糊,行业融合日渐深入。
数据显示,2012年年末,四大行网银客户数量已经超过了4.3亿户,招行个人电子银行交易替代率达到了90.66%。交通银行电子银行分流率现已超过76%,而三年前的这一比例还在50%。
从证券业来看,分析人士认为,互联网证券并不是传统证券行业在互联网上的外延化扩张,它将会借助网络技术打造出新的网络证券模式,颠覆性地改变券商的传统经营模式。
在大数据的冲击下,券商现有的业务将各有进退。经纪业务首当其冲,将最先面临转型压力。另外,投行通道中介重要性逐渐衰弱,历史上作为投行收入核心的IPO业务利润贡献度将有所下降。还有,券商资管的下一个爆发点在于集合理财业务、资产证券化和信用业务。大数据将进一步加深资管业务的精细化和专业化,助力这些板块获得新的突破。
总之,随着大资管时代的来临,证券、基金等金融机构迫切需要打通渠道通路,平衡渠道体系格局,低成本高效率的网络渠道有助于帮助证券、基金实现这一目标。
大数据将给各行各业带来变革性机会,但真正大数据运用仍处于发展初级阶段。据美国麦肯锡咨询机构在其一份关于大数据研报中指出,大数据已经对美国健康医疗、欧洲的政府公共管理、个人位置数据、美国的零售业及制造业等五个部门产生了重大的经济影响,其中在公共管理领域,每年产生约2500亿美元(约合1.54亿元人民币)的潜在价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26