
用SPSS进行多变量数据分析
1.将所给的数据输入SPSS 22.0中文版。分别设置变量为温度,体重1、2、3、4;体重,温度5、10、15、20、30。
2.用SPSS进行作图(过程略)。
3.对数据进行多因素变量分析,具体操作如下:
(1)以体重组和温度5、10、15、20、30作为变量,在菜单里选择分析->比较平均值->单因素ANOVA,将体重组选入“因子”,将温度5、10、15、20、30选入“因变量列表”,在“事后多重比较”中选中Tukey-B(视情况选择其他),分别修改显著性水平为0.05、0.01,点击“选项”,勾选“描述性”,然后点击确定,得到输出结果,把结果导出到Excel里。
(2)以温度和体重组1、2、3、4作为变量,再次重复上述步骤,其中将温度选入“因子”,将体重组1、2、3、4选入“因变量列表”,其余操作步骤相同。
(3)根据SPSS导出的数据,处理结果如下:
表1 同一温度下,不同体重组之间显著性分析结果
Table 1 The significant results of different weight at the same temperature
从表1可以得出结论:
1.在alpha = 0.05水平上,在5℃时,体重组1和体重组3、4有明显差异;在10℃时,体重组1和3、4之间有明显差异,体重组2和4之间有明显差异;在15℃和20℃时,体重组1、2和3、4之间有明显差异;在30℃时,各体重组之间无明显差异。
2.在alpha = 0.01水平上,在5℃时,体重组1、2和4之间有明显差异;在10℃时,体重组1和4之间有明显差异;在15℃时,体重组1和3、4,2和4之间有明显差异;在20℃和30℃时,各体重组之间无明显差异。
注:有不同字母即代表有明显差异。
表2 同一体重组下,不同温度之间显著性分析结果
Table2. The significant results of different temperature at the same weight
从表2可以得出结论:
1.在alpha =
0.05水平上,对于体重组1,温度5和10、15、20、30有明显差异,温度10和30有明显差异;对于体重组2,温度5和10、15、20、30有明显差异,温度10、15、20和30有明显差异;对于体重组3和4,温度5和10、15、20、30有明显差异。
2.在alpha = 0.01水平上,对于体重组1,温度5和10、15、20、30有明显差异,温度10和30有明显差异;对于体重组2,温度5和10、15、20、30有明显差异;对于体重组3和4,温度5和10、15、20、30有明显差异。
结论:
由以上分析可以得出结论,蜗牛的初始体重和所处的温度都对取食量有一定的影响。在温度较低时,体重差别大的取食量差别也大,温度较高时则没有明显差别。在体重较低时,取食量受温度影响较为明显,在体重较高时,5℃和10℃及以上温度有明显差别,10℃、15℃、20℃、30℃之间则无明显差别。
注:本人非此专业学生,因此文中如有错误,恳请大家批评指正。
附Excel原始数据:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28