京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据信息安全底线怎样界定
很多人写文章赞扬大数据将如何改变我们做业务的方式,从预测性分析到发现海量非结构化数据中隐 藏的情报信息等。还有些人则认为应该谨慎对待大数据,他们称数据是难以操纵的,使用大量数据并不会带来媒体炒作的变革。关于大数据的讨论已经有很多,它究竟是什么,它能做什么,不能做什么呢?
巨大的价值潜力总让人“欲罢不能”
然而,这并不意味着我们应该忽略大数据的价值。大数据提供巨大的潜力,能够解决各种问题,我们不能仅仅因为少数错误数据就完全放弃大数据。根据某咨询公司的报告发现,61%的IT主管认为,他们需要越来越多地使用商业智能,这是高优先级工作。大多数高管也很希望看到,把交易记录、结构化和非结构化数据作为一个整体,从中获得的情报信息。然而,如果没有数据分析等技术,他们不太可能挖掘出这些情报。企业也面临着这样的压力,即更快地分析更多的数据,以做出更好的决策。
企业是否应该放弃大数据,或者没有办法相信大数据?答案是否定的,我们有办法相信大数据,但不是所有的大数据解决方案都相同。在极端大规模数据分析中 取得了巨大的进步,但是很多人认为它不适合于企业级应用。大数据分销商已经开始创建平台,来克服数据分析的缺点,他们主要通过修复安全问题,以及使其 更容易让企业高管使用。有些企业甚至已经将大数据转移到云数据库。这些平台还提供了必要的附加组件来获得实时分析,将从经济实惠的大容量存储系统转变为真正的分析平台。
错误数据可能导致安全灾难
我们在新闻中也看到过这样的事情,即企业对错误的数据采取行动,然后“深受其害”。在2013年4月,一家新闻机构的Twitterfeed被黑客攻击,该黑客发出了虚假的tweet,声称白宫正受到攻击。这则消息导致几家投资机构开始抛售股票,最终让这些公司遭遇巨大的财产损失。这
样的故事给我们敲响了警钟,数据,即使是大数据,并不一定是准确或者可行的。
领导的决策和信任是大数据启用的关键
在企业领导考虑大数据的成本和应用时,他们需要问自己的问题是,他们真的可以相信大数据吗?毕竟,很多企业高管此前都看到过“小数据”带来的失败经 历,并且,每当分析师建议不要相信一种直觉时,第一个倾向就是质疑数据的真实性。有些企业面对大数据能够游刃有余,而其他企业则极其缺乏信心。这是值得关 注的问题,因为企业从大数据中获得有价值的洞察将取决于他们是否有信心来对这些洞察付诸行动。
其中最显着的问题是不信任数据,很多高管对于大数据带来的信息类型存在信任问题。很多企业担心,大数据系统收集海量未分类、未经分析的数据,这些数据没有得到像传统数据库对数据部署的相同级别的保护,例如加密。
大数据信任的关键 在于企业的安全防护能否建立足够的信任壁垒
其实我们从各种“信任”分析的现状不难发现,对于大数据的使用与否,关键还是对于数据安全的考量,如果能在本源的数据上加强防护,或许对于建立使用大数据的信任壁垒有很好的帮助。而在多样危机的信息时代,多模加密技术所达到的本源且灵活的防护正好为大数据的复杂安全形势提供了有力支持。而这先进的安全技术正是山丽防水墙所独有的。
大数据作为可能推动信息时代更快发展的技术,随着各项安全指标、技术指标不断完善,必将成为今后最有竞争力的数据分析技术。对于利用这项技术的个人、企业甚至是国家来说,在指望技术人员提高安全度的同时,自身对于数据的防护也是必不可少,采用具有针对性的加密软件或是最好的方法!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12