
大数据的发展已经不能停下脚步
随着大数据时代的逐步发展,大数据的成果必将使广大用户受惠,使用户的行为或消费更有效率。
大数据概念提出和技术的应用,其实是信息大爆炸必须经历的技术进化,人们为了获取更丰富的数据,促进了计算机、互联网、物联网技术的飞速发展,而获取数据后,人们如何获取数据隐含的各种信息?如何更为深刻、全面的洞察数据隐含的内容?这些都为人类提升全面的洞察分析能力提供了前所未有的空间与潜力,当然,如此庞大的数据意味着更多的机会,提纯后的数据价值更大,意味着更有分析意义。而这些将成为从业人员的价值宝藏,通俗点说就是数据金矿,意味着财富,人们对海量数据的挖掘和使用,是促使行业增长、促使大众更多消费的手段,从而推动社会的不断前进。其实这是一种相互推进的关系,深刻、全面的洞察数据隐含内容后,用科技等手段去推动社会的快速发展,同时社会要更进一步发展则需要去更深层次的钻研大数据。
如此一来,大数据的发展已经不能停下脚步,它后面有一股强大的力量。
为什么互联网能够发展的如此迅速?矛盾的斗争性是事物发展的动力,人类社会不断向前发展,若与人类生活密切相关的互联网技术停滞不前,则会阻碍社会的进步与发展,说的通俗点就是时代的要求。安防行业的大数据时代也同于此理,它的发展速度能不能像互联网那样迅速,小编不敢妄论,但一定会飞一会儿。
面对大数据的存储、管理、分析,出现了一系列问题,那么未来的路又该如何走呢?
结合“云”“物联网”等技术
传统IT行业大数据技术的发展,对整个IT产业有着重大的促进作用,积极推进IT技术与安防技术的融合,充分发挥IT行业的技术优势,特别是大数据方面的技术积累,来解决各行业所面临的大数据挑战,推动各行业进入新的大数据时代是重要的一步。大数据概念提出的时候,从业者有狂欢的、有谨慎的、有反对的。但同时人类自己造就了数据,造就了数据的飞速发展,那么就需要去驾驭这些数据,用这些数据为人类服务,未来需要和和“云”、互联网等技术相辅相成,共同推动人类技术的发展和进步。
物联网的数据是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的数据有明显的颗粒性,其数据通常带有时间、位置、环境和行为等信息,通过统一物联网架构设计,将非结构化的数据变得结构化,不同系统之间不同结构的数据尽可能地统一,为决策做出重要的参考。
分布式存储
PB级数据的存储管理问题,这个问题主要通过分布式存储方案来解决。基于分布式存储、集中管理思路的、以及基于iSCSI技术的IPSAN来作为视频监控的存储解决方案,这个方案的主要特点包括:分布式存储,集中管理、基于iSCSI技术的IPSAN(STorageAreaNetwork)、流媒体网关可以作为存储解决方案的核心设备。
分布式存储集中管理共有三级,上级监控中心:上级监控中心通常只有一个,主要由数字矩阵、认证服务器和VSTARClerk软件等;本地监控中心:本地监控中心可以有多个,可依据地理位置设置,或者依据行政隶属关系设立,主要由数字矩阵、流媒体网关、iSCSI存储设备、VSTARRecorder软件等组成;音视频的数据均主要保存在本地监控中心,这就是分布式存储的概念;监控前端:主要由摄像头、网络视频服务器组成,其中VE4000系列的网络视频服务器可以带硬盘,该硬盘主要是用于网络不畅时,暂时对音视频数据进行保存,或者需要在前端保存一些重要数据的情况。
大数据的分析应用
不管是音视频、图片等传统安防数据,还是信息感知带来的数据,其数据的价值密度都较低,但是提纯后的数据意味着金矿,意味着财富,只有从海量数据中真正分析、挖掘出有意义的信息或规律,才能为商业行为指明方向,才能实现商业价值。如何从音频、视频、信息感知等数据中更迅速地完成有价值数据的获取?将这些安防类信息更好的服务于各种业务部门,如公安、交警等国家政府机构是大数据的方向。
大数据在政府职能部门的应用。借助数据分析平台,通过对以往大量案件的分析,推断出一些犯罪的模型和犯罪的“热点地区”,进行有效布置警力,最大限度的遏制犯罪的发生等。
大数据在商业领域的应用。借助数据分析的技术,科技进行人流分析、产品关注度分析、购买消费情况分析等等,这样能够形成一个庞大的商业参照表。
大数据在医学领域、教育领域、金融领域等等已经广泛涉及。包括对数据的挖掘和分析未来谁能透过大数据智能分析,预先把控行业发展的脉搏,他就将掌握市场和竞争的主动权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11