
物联网和云计算发展 大数据价值显现
曾有调查显示,在近两年所产生的数据量比以往四万年的数据量还要多,新兴大数据将成为企业发展的当务之急,而常规技术已经难以应对PB(1024TB)级的大规模数据量。这一变化所带来的挑战是成功的企业在未来发展过程中必须要面对的。只有那些能够运用这些新数据型态的企业,方能打造可持续的重要竞争优势。
大数据是来自方方面面,可以是生活中的购物交易,也可以是工业上的生产制造;从社交网络媒体信息,到在线视频图像资料;从企业的信息管理系统,到政府部门的电子政务,都有着大量的数据产生。而随着物联网和云计算产业的蓬勃发展,大数据的价值还将进一步显现。
在物联网时代,成万上亿计的网络传感器被嵌入到现实世界的各种设备中,如移动电话、智能电表、汽车和工业机器中,用来感知、创造并交换数据,无处不在的传感网络带来了无处不在的数据,这些数据正日益成为与实物资本和人力资源同等重要的生产要素。
于此同时,云计算为物联网所产生的海量数据提供了很好的存储空间,并使得实时在线处理成为可能。在近几年,IBM、甲骨文、微软、SAP、谷歌等IT企业不仅在全球部署了多数据中心,还花费了150亿美元收购了专攻数据管理和分析方面的软件企业。
当人们还在热衷于物联网和云计算概念炒作的时候,全球领先的IT企业们已经开始把注意力转向物联网和云计算产业背后的大数据,其潜在的价值正在被逐渐挖掘。大数据比物联网、云计算更重要的预测也许有点夸张,但可以肯定的是:云计算不单是提供云存储等服务,对大数据的智能化处理不仅是云计算的题中之义,更是其核心与关键。
在未来,大数据也将逐渐成为CIO们工作中的一部分。一方面,商业智能的普及,让企业对数据的重要性已经有了充分认识;另一方面,社交媒体、电子商务、物联网等新应用的兴起,打破了企业原有价值链为围墙,仅对原有价值链各个环节的数据进行分析,已经不能满足需求,他们需要借助大数据战略打破数据边界,了解更为全面的运营及运营环境的全景图。
对于CIO们来说,如何实现高效、智能的大数据存储是一个非常重要的问题。非结构化数据正在呈海量增长趋势,如何对其进行有效的数据管理和应用?现有数据保护与文档归档机制能否应对日益增长的海量数据?如何攻克移动数据管理的难点问题?如何在复杂的数据环境下实现高效的数据安全?这些都是CIO在未来要面临的问题,如果能够有效解决好这些问题,大数据将为企业创造更多的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10