
Spss的基本方法使用步骤
由于一次的调研工作,我们的数据分析采用spss的统计分析工具,然后我是一个新人,全都是一步一步从零开始操作的。在学习的过程中简单记录了一点笔记,既然写了,就觉得应该把它保存下来,所以来到了这里,为我的第一次spss操作做个马克。
因子分析方法:指标非常多,反映相同事情的进行聚合
设置的地方:
描述—— kmo
抽取 —— 主成分,碎石图
旋转——最大方差法
得分——保存为变量
选项——大小为变量、删除最小系数,特征值为0.6
kmo > 0.6 ——看是否有效,对原始数据的检验。
在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significance,意为“显著性”,后面的值就是统计出的P值,如果P值0.01<P<0.05,则为差异显著,如果P<0.01,则差异极显著。
公因子方差——提取程度(损失的数据,如果损失低于40%即满意)
解释总方差:可以分成几类,然后提取主成分因子,累积方差贡献率,累积特征值大于等于85%(放宽70%).(损失率低于15%)
碎石图:类似于解释总方差,特征值大于1的就是主成分,对解释方差的解释和完善
成分矩阵——一般不考虑,不够充分,只是中间步骤
旋转后成分矩阵——成分1,成分2中大于0.6的归为一类,载荷大于设置的值才会把得分显示在视图。
步骤:
分析→度量→可靠性分析→统计量→描述性(如果项已删除则进行度量)→继续(模型α)→确定
分析:可靠性统计量:0.7以上有效
可删除的分析:如果删除后信度变大,则可以考虑把这个因素删除
平均数:反应数量的中点
中位数:全体样本的中点
步骤:
均值:描述性统计分析→描述→导入变量→确定
中位数:比较均值→均值→导入变量→选项→导入中位数即可→确定
步骤:
分析→回归→线性→因变量→自变量→
统计量:估计→模型拟合度→共线性诊断→DW
绘制:Y:ZRESID, X:ZPRED; 直方图,正态概率图
保存:不操作
选项: 默认
→确定
模型汇总表
DW统计量代表自相关
DW = 2不存在为伪回归
DW < 2 正自相关
DW > 2 负相关
多重响应,多重响应数据本质上属于分类数据,但由于各选项均是对同一个问题的回答,之间存在一定的相关,将各选项单独进行分析并不恰当。因此对多选题最常见的分析方法是使用SPSS中的“多重响应”命令,通过定义变量集的方式,对选项进行简单的频数分析和交叉分析
作用1:进行简单的频数分析:可以直观明了的比较一道多选题的各个选项被选比例。
作用2:进行交叉分析:可以通过设置分层变量来进行某个选项控制下的分析。
步骤:
分析→多重响应→定义变量集(把多选题变成一个变量)→设置定义把多选题的选项放进集合中的变量→将变量编码设置为二分法,计数值为1→名称标签→添加 、
行、列→定义范围→确定
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10