京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在单因素方差分析ANOVA中,如果该因素影响比较显著,那么需要进一步利用多重比较方法比较该因素不同水平的影响,确定不同水平下该因素的影响是否显著。常见的多重比较方法主要有两种,LSD法和Tukey HSD法。下面对R语言中,这两种多重比较方法的实现进行举例。
前期数据如下,影响因素为group,指标为value:
> head(tarD)
value group sample time
A0522W11NC1 0.0002053745 normal A0522W11NC1 11week
A0522W11NC2 0.0031773712 normal A0522W11NC2 11week
A0522W11NC3 0.0060378288 normal A0522W11NC3 11week
A0522W11NC4 0.0017626931 normal A0522W11NC4 11week
A0522W11NC5 0.0018035261 normal A0522W11NC5 11week
A0522W11NC6 0.0036690067 normal A0522W11NC6 11week
> tmp <- aov(value ~ group, tarD)
最小显著差数检验法(LSD法)
> res <- LSD.test(tmp, 'group', p.adj = 'bonferroni')
> print(res$groups)
trt means M
1 normal 2.576910e-03 a
2 drug3 7.552555e-04 b
3 drug2 7.269247e-05 b
4 high_fat 6.220610e-05 b
5 drug1 2.954733e-05 b
Tukey氏固定差距检验法(Tukey HSD)
> TukeyHSD(tmp)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = value ~ group, data = tarD)
$group
diff lwr upr p adj
drug2-drug1 4.314514e-05 -0.0015468705 0.0016331608 0.9999916
drug3-drug1 7.257082e-04 -0.0008643074 0.0023157239 0.6929965
high_fat-drug1 3.265877e-05 -0.0015149488 0.0015802664 0.9999969
normal-drug1 2.547362e-03 0.0009997549 0.0040949700 0.0002613
drug3-drug2 6.825631e-04 -0.0009487586 0.0023138847 0.7563196
high_fat-drug2 -1.048637e-05 -0.0016005020 0.0015795293 1.0000000
normal-drug2 2.504217e-03 0.0009142017 0.0040942330 0.0004945
high_fat-drug3 -6.930494e-04 -0.0022830651 0.0008969662 0.7277757
normal-drug3 1.821654e-03 0.0002316386 0.0034116699 0.0175538
normal-high_fat 2.514704e-03 0.0009670961 0.0040623113 0.0003161
> TukeyHSD(tmp)$group
diff lwr upr p adj
drug2-drug1 4.314514e-05 -0.0015468705 0.0016331608 0.9999915820
drug3-drug1 7.257082e-04 -0.0008643074 0.0023157239 0.6929965170
high_fat-drug1 3.265877e-05 -0.0015149488 0.0015802664 0.9999969171
normal-drug1 2.547362e-03 0.0009997549 0.0040949700 0.0002612744
drug3-drug2 6.825631e-04 -0.0009487586 0.0023138847 0.7563195891
high_fat-drug2 -1.048637e-05 -0.0016005020 0.0015795293 0.9999999705
normal-drug2 2.504217e-03 0.0009142017 0.0040942330 0.0004944674
high_fat-drug3 -6.930494e-04 -0.0022830651 0.0008969662 0.7277757202
normal-drug3 1.821654e-03 0.0002316386 0.0034116699 0.0175537862
normal-high_fat 2.514704e-03 0.0009670961 0.0040623113 0.0003161003
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12