京公网安备 11010802034615号
经营许可证编号:京B2-20210330
过拟合即在训练误差很小,而泛化误差很大,因为模型可能过于的复杂,使其”记住”了训练样本,然而其泛化误差却很高,在传统的机器学习方法中有很大防止过拟合的方法,同样这些方法很多也适合用于深度学习中,同时深度学习中又有一些独特的防止过拟合的方法,下面对其进行简单的梳理.
1. 参数范数惩罚
范数正则化是一种非常普遍的方法,也是最常用的方法,假如优化:
其中L为经验风险,其为在训练样本上的误差,而G为对参数的惩罚,也叫结构风险.α是平衡两者,如果太大则对应的惩罚越大,如过太小,甚至接近与0,则没有惩罚.
最常用的范数惩罚为L1,L2正则化,L1又被成为Lasso:
即绝对值相加,其趋向于是一些参数为0.可以起到特征选择的作用.
L2正则化为:
其趋向与,使权重很小.其又成为ridge.
2. 数据增强
让模型泛化的能力更好的最好办法就是使用更多的训练数据进行训练,但是在实践中,我们拥有的数据是有限的,解决这一问题可以人为的创造一些假数据添加到训练集中.
一个具体的例子:
在AlexNet中,将256*256图像随机的截取224*224大小,增加了许多的训练样本,同时可以对图像进行左右翻转,增加样本的个数,实验的结果可以可降低1%的误差.
在神经网络中输入噪声也可以看做是数据增强的一种方式.
3. 提前终止
如下图所示(图片来源deep learning),当随着模型的能力提升,训练集的误差会先减小再增大,这样可以提前终止算法减缓过拟合现象.关于算法的具体流程参考deep learning.
提前终止是一种很常用的缓解过拟合的方法,如在决策树的先剪枝的算法,提前终止算法,使得树的深度降低,防止其过拟合.
4. 参数绑定与参数共享
在卷积神经网络CNN中(计算机视觉与卷积神经网络 ),卷积层就是其中权值共享的方式,一个卷积核通过在图像上滑动从而实现共享参数,大幅度减少参数的个数,用卷积的形式是合理的,因为对于一副猫的图片来说,右移一个像素同样还是猫,其具有局部的特征.这是一种很好的缓解过拟合现象的方法.
同样在RNN中用到的参数共享,在其整条时间链上可以进行参数的共享,这样才使得其能够被训练.
5. bagging 和其他集成方法
其实bagging的方法是可以起到正则化的作用,因为正则化就是要减少泛化误差,而bagging的方法可以组合多个模型起到减少泛化误差的作用.
在深度学习中同样可以使用此方法,但是其会增加计算和存储的成本.
6. Dropout
Dropout提供了一种廉价的Bagging集成近似,能够训练和评估指数级数量的神经网络。dropout可以随机的让一部分神经元失活,这样仿佛是bagging的采样过程,因此可以看做是bagging的廉价的实现.
但是它们训练不太一样,因为bagging,所有的模型都是独立的,而dropout下所有模型的参数是共享的.
通常可以这样理解dropout:假设我们要判别一只猫,有一个神经元说看到有毛就是猫,但是如果我让这个神经元失活,它还能判断出来是猫的话,这样就比较具有泛化的能力,减轻了过拟合的风险.
7. 辅助分类节点(auxiliary classifiers)
在Google Inception V1中,采用了辅助分类节点的策略,即将中间某一层的输出用作分类,并按一个较小的权重加到最终的分类结果中,这样相当于做了模型的融合,同时给网络增加了反向传播的梯度信号,提供了额外的正则化的思想.
8. Batch Normalization
在Google Inception V2中所采用,是一种非常有用的正则化方法,可以让大型的卷积网络训练速度加快很多倍,同事收敛后分类的准确率也可以大幅度的提高.
BN在训练某层时,会对每一个mini-batch数据进行标准化(normalization)处理,使输出规范到N(0,1)的正太分布,减少了Internal
convariate
shift(内部神经元分布的改变),传统的深度神经网络在训练是,每一层的输入的分布都在改变,因此训练困难,只能选择用一个很小的学习速率,但是每一层用了BN后,可以有效的解决这个问题,学习速率可以增大很多倍.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27