
关于描述性统计分析
在数据分析的时候,一般首先要对数据进行描述性统计分析(Descriptive Analysis),以发现其内在的规律,再选择进一步分析的方法。描述性统计分析要对调查总体所有变量的有关数据做统计性描述,主要包括数据的频数分析、数据的集中趋势分析、数据离散程度分析、数据的分布、以及一些基本的统计图形。
(1)数据的频数分析:在数据的预处理部分,我们曾经提到利用频数分析和交叉频数分析来检验异常值。此外,频数分析也可以发现一些统计规律。比如说,收入低的被调查者用户满意度比收入高的被调查者高,或者女性的用户满意度比男性低等。不过这些规律只是表面的特征,在后面的分析中还要经过检验。
(2)数据的集中趋势分析:数据的集中趋势分析是用来反映数据的一般水平,常用的指标有平均值、中位数和众数等。各指标的具体意义如下:
平均值:是衡量数据的中心位置的重要指标,反映了一些数据必然性的特点,包括算术平均值、加权算术平均值、调和平均值和几何平均值。
中位数:是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数。
众数:是指在数据中发生频率最高的数据值。
如果各个数据之间的差异程度较小,用平均值就有较好的代表性;而如果数据之间的差异程度较大,特别是有个别的极端值的情况,用中位数或众数有较好的代表性。
(3)数据的离散程度分析:数据的离散程度分析主要是用来反映数据之间的差异程度,常用的指标有方差和标准差。方差是标准差的平方,根据不同的数据类型有不同的计算方法。
(4)数据的分布:在统计分析中,通常要假设样本的分布属于正态分布,因此需要用偏度和峰度两个指标来检查样本是否符合正态分布。偏度衡量的是样本分布的偏斜方向和程度;而峰度衡量的是样本分布曲线的尖峰程度。一般情况下,如果样本的偏度接近于0,而峰度接近于3,就可以判断总体的分布接近于正态分布。
(5)绘制统计图:用图形的形式来表达数据,比用文字表达更清晰、更简明。在SPSS软件里,可以很容易的绘制各个变量的统计图形,包括条形图、饼图和折线图等。
示例 SIM手机描述性统计分析
为简化起见,我们只分析SIM手机用户满意调查中的两个变量:“总体感知质量”和“总体满意度”变量。
(1)数据的频数分析
用SPSS软件的频数分析可以很容易地画出两个变量的频数图:
两个变量的频数图表明:大部分被调查者对SIM手机的质量评价较高,总体感觉比较满意,打分在8-10分之间。
(2)数据的集中趋势分析
利用SPSS的描述性统计分析,计算SIM手机“总体感知质量”和“总体满意度”的平均值、中位数和众数:
共有200个(N)被调查者参与了SIM手机调查;总体感知质量均值(Mean)7.11分、中位数(Median)8分、众数(Mode)8分;总体满意度均值7.43分、中位数8分、众数8分,与前面的频数分析结果一致。
(3)数据的离散程度和分布分析:
同样利用SPSS软件的描述性统计分析,可以得出SIM手机的离散程度和分布指标:
“总体感知质量”变量的标准差(Std. Deviation) 2.36、方差(Variance) 5.56;“总体满意度”标准差2.29、方差5.25,说明不同样本对两个变量打分的差异程度不大,或者说不同样本对SIM手机评价的差异不大。“总体感知质量”变量的偏度(Skewness)-0.961、峰度(Kurtosis)0.358;“总体满意度”变量偏度-0.988、峰度0.437,说明数据不符合正态分布
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10