京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的5个误区与真相
大数据”已经成为一个包罗万象的术语,包括我们的数字生活方式所产生的大量信息,和处理这些数据用以改善市场营销、产品的分析技术,和商业智能。责难“大数据”的价值营销已经非常时髦,许多专家和顾问称大数据“没什么大不了”。
我信仰“大数据”就像我信仰所有数据的力量改变我们的生活。试想一下,强大的应用程序已经出现在医疗保健,世界饥饿问题,全球经济,甚至对于某些人来说比生命更重要的体育竞争力。
误区1:“大数据”有一个被普遍接受的、明确的定义
真相:不是这样的!很多人都有使用什么样的标准来定义“大数据”的麻烦。这使得它容易被用于各种背景 - 包括某些背景下使用另一个术语可能更合适。仅仅规模本身并不大数据,还包括而且广度以及它被如何处理。Akamai 每天针对超过7500万事件进行分析,以更好地确定广告目标。
为了帮助你形成你自己的定义,“大数据”通常被认为具备这些条款:
·提供的数据进行存储和分析,在当今的经济数量的急剧增加。
·包括“非结构化”数据(即文本、图像、声音、影视、超媒体等信息),这就需要先进的新的数据提取和分析技术,以使之可用于商业用途。
·在数据的使用中,自动化的作用越来越大,例如,实时地创造和提供的营销信息。
误区2:大数据是新的东西
真相:虽然在这个时代的数据体量更大,并且我们处理这些数据的能力也达到一个较高的新水平,但关联和分析大体量的信息,肯定不是什么新的概念。例如,每一个单独的字巨大的交叉在圣经中使用,被称为“concordances”,这在几个世纪前的学者僧人使用的第一个数据库。
误区3:“大数据”意味着“大营销”
真相:大数据最有效的使用往往不是更大的营销,而是更精简、更高效的营销。现在最大的挑战是将大数据转化为可操作的洞见。充分的经验包括要管理许多来源、多种格式的数据(如交易,社会情绪,网上行为),而且往往是实时的。一家酒店想要提高客户每次访问期间的消费,并增加每年的客户访问数量。酒店必须抢下竞争性报价,并在正确的背景传递消息。如果没有有效的营销分析,你就无法做到这一点。数据在营销中的使用虽然是通用的,但“大数据”的支出尚未普及。
误区4:更大的数据更好
真相:与生活中的很多事情式样,更大并不一定意味着更好。数据不能自己告诉我们任何东西。关键是要有聪明的人,知道用数据来解释你的业务和对象。大多数营销人员总是必须在促销和预算之间做出取舍。一家拥有50至60种产品要销售的金融服务公司,使用的营销分析(有时甚至是“大数据”)决定为哪个渠道提供哪类产品。一家出版者将使用同样的方法来为每个不同的用户提供不同的内容、广告和有感觉的摆置。
无论行业或市场份额多寡,营销人员处处都是消费数据的管家。这是我们的行动和能力,允许品牌以负责任的方式使用所有的数据(不管是否是大数据)来取悦客户,并让他们认可我们的品牌。
误区5:“大数据”将决定你的营销方法
真相:所有的数据都只会告知,而无法驱动你的营销策略。在电子邮件营销中“网络最佳报价”是最强大的触发器之一。自动化使得这些及时和可操作。然而,如果没有人的因素,整个数据驱动的方法分崩离析, 因为该报价的选择必须有意义,与品牌定位吻合。
在消费者和品牌之间的连接是有魔力的,数据允许并加速这些连接,但没有具体定义它们。消费者经常通过品牌相互连接,所以营销分析师和策略制定者寻求理解品牌在这些相互作用中的角色。同样地,一个时尚品牌将使用这些数据拿出来,创建一个令人赞叹的体验,接近销售和建立客户忠诚。
如果不能帮助我们创造更多意义和相关的客户体验,大数据没有任何意义,和小数据或任何其他形式的数据一样
。今天,我们的数据驱动的生活方式是如此根深蒂固,我们很难注意到什么样的营销发生 -
就像当我在酒店或机场签到就被认出,或给我发送我经常购买(或可能想尝试)的东西的报价,或帮助我与有共同兴趣的朋友建立连接。在任何组织中负责任地使用数据,将建立消费品牌与消费者的消费之间的这些连接。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27