
大数据的5个误区与真相
大数据”已经成为一个包罗万象的术语,包括我们的数字生活方式所产生的大量信息,和处理这些数据用以改善市场营销、产品的分析技术,和商业智能。责难“大数据”的价值营销已经非常时髦,许多专家和顾问称大数据“没什么大不了”。
我信仰“大数据”就像我信仰所有数据的力量改变我们的生活。试想一下,强大的应用程序已经出现在医疗保健,世界饥饿问题,全球经济,甚至对于某些人来说比生命更重要的体育竞争力。
误区1:“大数据”有一个被普遍接受的、明确的定义
真相:不是这样的!很多人都有使用什么样的标准来定义“大数据”的麻烦。这使得它容易被用于各种背景 - 包括某些背景下使用另一个术语可能更合适。仅仅规模本身并不大数据,还包括而且广度以及它被如何处理。Akamai 每天针对超过7500万事件进行分析,以更好地确定广告目标。
为了帮助你形成你自己的定义,“大数据”通常被认为具备这些条款:
·提供的数据进行存储和分析,在当今的经济数量的急剧增加。
·包括“非结构化”数据(即文本、图像、声音、影视、超媒体等信息),这就需要先进的新的数据提取和分析技术,以使之可用于商业用途。
·在数据的使用中,自动化的作用越来越大,例如,实时地创造和提供的营销信息。
误区2:大数据是新的东西
真相:虽然在这个时代的数据体量更大,并且我们处理这些数据的能力也达到一个较高的新水平,但关联和分析大体量的信息,肯定不是什么新的概念。例如,每一个单独的字巨大的交叉在圣经中使用,被称为“concordances”,这在几个世纪前的学者僧人使用的第一个数据库。
误区3:“大数据”意味着“大营销”
真相:大数据最有效的使用往往不是更大的营销,而是更精简、更高效的营销。现在最大的挑战是将大数据转化为可操作的洞见。充分的经验包括要管理许多来源、多种格式的数据(如交易,社会情绪,网上行为),而且往往是实时的。一家酒店想要提高客户每次访问期间的消费,并增加每年的客户访问数量。酒店必须抢下竞争性报价,并在正确的背景传递消息。如果没有有效的营销分析,你就无法做到这一点。数据在营销中的使用虽然是通用的,但“大数据”的支出尚未普及。
误区4:更大的数据更好
真相:与生活中的很多事情式样,更大并不一定意味着更好。数据不能自己告诉我们任何东西。关键是要有聪明的人,知道用数据来解释你的业务和对象。大多数营销人员总是必须在促销和预算之间做出取舍。一家拥有50至60种产品要销售的金融服务公司,使用的营销分析(有时甚至是“大数据”)决定为哪个渠道提供哪类产品。一家出版者将使用同样的方法来为每个不同的用户提供不同的内容、广告和有感觉的摆置。
无论行业或市场份额多寡,营销人员处处都是消费数据的管家。这是我们的行动和能力,允许品牌以负责任的方式使用所有的数据(不管是否是大数据)来取悦客户,并让他们认可我们的品牌。
误区5:“大数据”将决定你的营销方法
真相:所有的数据都只会告知,而无法驱动你的营销策略。在电子邮件营销中“网络最佳报价”是最强大的触发器之一。自动化使得这些及时和可操作。然而,如果没有人的因素,整个数据驱动的方法分崩离析, 因为该报价的选择必须有意义,与品牌定位吻合。
在消费者和品牌之间的连接是有魔力的,数据允许并加速这些连接,但没有具体定义它们。消费者经常通过品牌相互连接,所以营销分析师和策略制定者寻求理解品牌在这些相互作用中的角色。同样地,一个时尚品牌将使用这些数据拿出来,创建一个令人赞叹的体验,接近销售和建立客户忠诚。
如果不能帮助我们创造更多意义和相关的客户体验,大数据没有任何意义,和小数据或任何其他形式的数据一样
。今天,我们的数据驱动的生活方式是如此根深蒂固,我们很难注意到什么样的营销发生 -
就像当我在酒店或机场签到就被认出,或给我发送我经常购买(或可能想尝试)的东西的报价,或帮助我与有共同兴趣的朋友建立连接。在任何组织中负责任地使用数据,将建立消费品牌与消费者的消费之间的这些连接。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26