
大数据商业的未来
最近几年可以看到,从软件开源到数据开放的运动正在兴起。开放主要追求自由、平等、责任和乐趣。但目前在美国有很多关于数据开放的争议,比如什么样的数据应该开放,开放到什么程度,究竟开放原始数据还是开放经过加工和解读过的数据……
可以看出,数据和信息的发展驱动着管理决策的发展,管理层也在不停地演变。
1970年代,赫伯特·西蒙提出,由于人们在决策过程中的理性是有限的,所以需要用计算机支持决策系统,帮助决策者扩大理性范围。此时出现了IBM研究员发明的关系型数据库——这种数据库结构化高、独立性强,之后出现了大型的信息管理系统。随着1980年代数据仓库的出现,数据挖掘开始兴盛,沃尔玛“啤酒+尿布”的故事是人们经常说到的案例。1990年代初,令人震惊的联机分析开始出现,这种分析方法可以从任何一个角度把数据切片化。然后就是商务智能。联机分析是对数据透视性的探测,可以通过“X光”从任何角度对数据做切片分析,数据挖掘就好比挖山凿矿性开采,而商务智能就是对未来的预测。
之后就是数据可视化,用图形表示数据和思想。如果不能把数据图像化,就无法理解它的最深层意思。数据可视化包括数据整合、分析、挖掘,最后到展示。
每一轮经济浪潮都是由几个主题引领的。在美国,一度是一系列诸如IBM、微软这样的IT公司,到后来的诸如Google等一系列的互联网公司,然后就是类似Facebook这样的社交网络,这些主题引领着美国经济的发展,大数据有望引领自从IT与互联网泡沫以来的下一轮经济增长浪潮。中国将成为全球最重要的大数据市场,很多中国的着名互联网公司已经开始在大数据上布局。
趋势与特征
大数据时代的产业发展有三个趋势:应用软件将泛互联网化、行业将垂直整合、数据将成为资产。
泛互联网化是收集数据的重要渠道,没有泛互联网化的软件,公司就难以获得用户的行为数据。随着行业的垂直整合,企业通过搜集大量的用户数据,可以更贴近用户,更理解用户,为用户提供更适用的服务。谁离客户越近,谁就在产业链上的话语权就越高,谁的数据价值就越高。数据将成为一种资产,将有可能取代石油成为全球最大的交易商品。
海量、增值、全息可见、融合复用是新媒体时代大数据的四大特征。并不是所有的数据都同样有价值,只有能带来编增值数据才是有意义的。大数据的融合和可流转性将是大数据时代真正发挥数据价值最核心的要求。如果数据不能够在企业和社会之间流动,那数据将变成一个个的信息孤岛而封闭存在,无法发挥最大的价值。所以,数据的交叉复用以及可流转性是大数据发挥巨大商业价值的前提。
新媒体时代,数据总量正在发生巨大变化。现实中,信息量在增加,但消费者个体却面临着信息过窄的问题,消费者的分析处理、筛选、过滤信息的能力并没有得到提高。另一方面,数据形态也在变化,从结构化向半结构化、非结构化方向发展,也从单渠道开始向多渠道方向发展。跨屏所产生的数据结合了互联网和移动互联网的数据,都在催生着移动互联网的发展。
方向与新商业模式
个性化是大数据精细化和融聚力的一个发展方向。
用户的信息饥渴感在与日俱增,希望利用碎片化的时间获得有价值的信息。但同时,用户对非关联信息的容忍度却在与日俱减,用户变得越来越不耐烦,如果推给他不相关的广告信息是他不想要的,用户体验会迅速下降。而在用户兴趣数据与日俱增的同时,用户甄别信息能力占比却在与日俱减。
从2B到2C到2D是面向数据的新商业模式。在美国,诸如Google、微软、亚马逊、苹果这样的公司已经建立了一个大数据平台。大数据平台建立起来后,一定是希望这些数据能够有效地在数据需求方之间进行流转。比如,可以供诸如北大、清华,南开等科研机构获取到能够用来做深度研究的原始数据。
而个人用户和个人终极应用开发者也需要平台上的数据流转。美国政府把机场飞机晚点的数据开放出来后,有的开发者就开发了一个应用,直接接到大数据平台把数据调出来,可以帮助每一个想坐飞机的人在下雨、下雪、天气好或不好的时候,不同航空公司在这个机场的晚点率是多少。比如,三角洲航空公司在下雨天的晚点率是78%,美联航的是率65%,方便旅客预估到达的时间。
未来挑战
大数据和新媒体都面临着未来的挑战。
挑战之一就是构建完整的消费者兴趣图谱,基于这个可以精准发现不同的用户有着不同的兴趣。
打通互联网和移动互联网的数据是另一个挑战。几个月以前在美国有一家公司,它仅仅是通过一种基于互联网和移动互联网的算法,就能够有效预测用户在移动互联网上的行为。这家公司靠这个理论和实践获得了600万美元的A轮融资。
从电子商务到社交媒体,再到移动互联网,我们看到了大量个性化的技术和商业应用的兴起。如今,企业的CMO们都关注怎样才能更有效、更精准地找到自己的目标客户群。也许你知道你的广告投入要有50%,但却不知道是哪50%。新媒体时代的大数据环境下,能够非常精准地定位每一个广告投入点,能够基于用户行为进行预测。如果能够把广告变成有用的信息,那么用户就不再不喜欢广告了。
最后一个挑战就是用户隐私法律的完善。如何定义用户隐私,也是最近很多企业和媒体正在关注的问题。如果说用户隐私是根据一些信息,根据某个数据能够帮助用户准确地标识出现实世界中唯一的某一个个体,比如他的姓名、电话、身份证号,这些属于信息隐私。如果根据这些数据无法标识出来具体人,其实这并不构成用户隐私。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28