京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈使用Python变量时要避免的3个错误
ython编程中经常遇到一些莫名其妙的错误, 其实这不是语言本身的问题, 而是我们忽略了语言本身的一些特性导致的,今天就来看下使用Python变量时导致的3个不可思议的错误, 以后在编程中要多多注意。
1、 可变数据类型作为函数定义中的默认参数
这似乎是对的?你写了一个小函数,比如,搜索当前页面上的链接,并可选将其附加到另一个提供的列表中。
从表面看,这像是十分正常的 Python 代码,事实上它也是,而且是可以运行的。但是,这里有个问题。如果我们给 add_to 参数提供了一个列表,它将按照我们预期的那样工作。但是,如果我们让它使用默认值,就会出现一些神奇的事情。
试试下面的代码:
def fn(var1, var2=[]):
var2.append(var1)
print(var2)
fn(3)
fn(4)
fn(5)
可能你认为我们将看到:
[3]
[4]
[5]
但实际上,我们看到的却是:
[3]
[3,4]
[3,4,5]
为什么呢?如你所见,每次都使用的是同一个列表,输出为什么会是这样?在 Python 中,当我们编写这样的函数时,这个列表被实例化为函数定义的一部分。当函数运行时,它并不是每次都被实例化。这意味着,这个函数会一直使用完全一样的列表对象,除非我们提供一个新的对象:
fn(3,[4])
[4,3]
答案正如我们所想的那样。要想得到这种结果,正确的方法是:
def fn(var1, var2=None):
ifnot var2:
var2 =[]
var2.append(var1)
或是在第一个例子中:
def search_for_links(page, add_to=None):
ifnot add_to:
add_to =[]
new_links = page.search_for_links()
add_to.extend(new_links)
return add_to
这将在模块加载的时候移走实例化的内容,以便每次运行函数时都会发生列表实例化。请注意,对于不可变数据类型,比如元组、字符串、整型,是不需要考虑这种情况的。这意味着,像下面这样的代码是非常可行的:
def func(message="my message"):
print(message)
2、 可变数据类型作为类变量
这和上面提到的最后一个错误很相像。思考以下代码:
class URLCatcher(object):
urls =[]
def add_url(self, url):
self.urls.append(url)
这段代码看起来非常正常。我们有一个储存 URL 的对象。当我们调用 add_url 方法时,它会添加一个给定的 URL 到存储中。看起来非常正确吧?让我们看看实际是怎样的:
a =URLCatcher()
a.add_url('http://www.google.com')
b =URLCatcher()
b.add_url('http://www.pythontab.com')
print(b.urls)
print(a.urls)
结果:
['http://www.google.com','http://www.pythontab.com']
['http://www.google.com','http://www.pythontab.com']
等等,怎么回事?!我们想的不是这样啊。我们实例化了两个单独的对象 a 和 b。把一个 URL 给了 a,另一个给了 b。这两个对象怎么会都有这两个 URL 呢?
这和第一个错例是同样的问题。创建类定义时,URL 列表将被实例化。该类所有的实例使用相同的列表。在有些时候这种情况是有用的,但大多数时候你并不想这样做。你希望每个对象有一个单独的储存。为此,我们修改代码为:
class URLCatcher(object):
def __init__(self):
self.urls =[]
def add_url(self, url):
self.urls.append(url)
现在,当创建对象时,URL 列表被实例化。当我们实例化两个单独的对象时,它们将分别使用两个单独的列表。
3、 可变的分配错误
这个问题困扰了我一段时间。让我们做出一些改变,并使用另一种可变数据类型 - 字典。
a ={'1':"one",'2':'two'}
现在,假设我们想把这个字典用在别的地方,且保持它的初始数据完整。
b = a
b['3']='three'
简单吧?
现在,让我们看看原来那个我们不想改变的字典 a:
{'1':"one",'2':'two','3':'three'}
哇等一下,我们再看看 b?
{'1':"one",'2':'two','3':'three'}
等等,什么?有点乱……让我们回想一下,看看其它不可变类型在这种情况下会发生什么,例如一个元组:
c =(2,3)
d = c
d =(4,5)
现在 c 是 (2, 3),而 d 是 (4, 5)。
这个函数结果如我们所料。那么,在之前的例子中到底发生了什么?当使用可变类型时,其行为有点像 C 语言的一个指针。在上面的代码中,我们令 b = a,我们真正表达的意思是:b 成为 a 的一个引用。它们都指向 Python 内存中的同一个对象。听起来有些熟悉?那是因为这个问题与先前的相似。
列表也会发生同样的事吗?是的。那么我们如何解决呢?这必须非常小心。如果我们真的需要复制一个列表进行处理,我们可以这样做:
这将遍历并复制列表中的每个对象的引用,并且把它放在一个新的列表中。但是要注意:如果列表中的每个对象都是可变的,我们将再次获得它们的引用,而不是完整的副本。
假设在一张纸上列清单。在原来的例子中相当于,A 某和 B 某正在看着同一张纸。如果有个人修改了这个清单,两个人都将看到相同的变化。当我们复制引用时,每个人现在有了他们自己的清单。但是,我们假设这个清单包括寻找食物的地方。如果“冰箱”是列表中的第一个,即使它被复制,两个列表中的条目也都指向同一个冰箱。所以,如果冰箱被 A 修改,吃掉了里面的大蛋糕,B 也将看到这个蛋糕的消失。这里没有简单的方法解决它。只要你记住它,并编写代码的时候,使用不会造成这个问题的方式。
字典以相同的方式工作,并且你可以通过以下方式创建一个昂贵副本:
再次说明,这只会创建一个新的字典,指向原来存在的相同的条目。因此,如果我们有两个相同的列表,并且我们修改字典 a 的一个键指向的可变对象,那么在字典 b 中也将看到这些变化。
可变数据类型的麻烦也是它们强大的地方。以上都不是实际中的问题;它们是一些要注意防止出现的问题。在第三个项目中使用昂贵复制操作作为解决方案在 99% 的时候是没有必要的。
总结
以上就是本文关于浅谈使用Python变量时要避免的3个错误的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27