
浅谈使用Python变量时要避免的3个错误
ython编程中经常遇到一些莫名其妙的错误, 其实这不是语言本身的问题, 而是我们忽略了语言本身的一些特性导致的,今天就来看下使用Python变量时导致的3个不可思议的错误, 以后在编程中要多多注意。
1、 可变数据类型作为函数定义中的默认参数
这似乎是对的?你写了一个小函数,比如,搜索当前页面上的链接,并可选将其附加到另一个提供的列表中。
从表面看,这像是十分正常的 Python 代码,事实上它也是,而且是可以运行的。但是,这里有个问题。如果我们给 add_to 参数提供了一个列表,它将按照我们预期的那样工作。但是,如果我们让它使用默认值,就会出现一些神奇的事情。
试试下面的代码:
def fn(var1, var2=[]):
var2.append(var1)
print(var2)
fn(3)
fn(4)
fn(5)
可能你认为我们将看到:
[3]
[4]
[5]
但实际上,我们看到的却是:
[3]
[3,4]
[3,4,5]
为什么呢?如你所见,每次都使用的是同一个列表,输出为什么会是这样?在 Python 中,当我们编写这样的函数时,这个列表被实例化为函数定义的一部分。当函数运行时,它并不是每次都被实例化。这意味着,这个函数会一直使用完全一样的列表对象,除非我们提供一个新的对象:
fn(3,[4])
[4,3]
答案正如我们所想的那样。要想得到这种结果,正确的方法是:
def fn(var1, var2=None):
ifnot var2:
var2 =[]
var2.append(var1)
或是在第一个例子中:
def search_for_links(page, add_to=None):
ifnot add_to:
add_to =[]
new_links = page.search_for_links()
add_to.extend(new_links)
return add_to
这将在模块加载的时候移走实例化的内容,以便每次运行函数时都会发生列表实例化。请注意,对于不可变数据类型,比如元组、字符串、整型,是不需要考虑这种情况的。这意味着,像下面这样的代码是非常可行的:
def func(message="my message"):
print(message)
2、 可变数据类型作为类变量
这和上面提到的最后一个错误很相像。思考以下代码:
class URLCatcher(object):
urls =[]
def add_url(self, url):
self.urls.append(url)
这段代码看起来非常正常。我们有一个储存 URL 的对象。当我们调用 add_url 方法时,它会添加一个给定的 URL 到存储中。看起来非常正确吧?让我们看看实际是怎样的:
a =URLCatcher()
a.add_url('http://www.google.com')
b =URLCatcher()
b.add_url('http://www.pythontab.com')
print(b.urls)
print(a.urls)
结果:
['http://www.google.com','http://www.pythontab.com']
['http://www.google.com','http://www.pythontab.com']
等等,怎么回事?!我们想的不是这样啊。我们实例化了两个单独的对象 a 和 b。把一个 URL 给了 a,另一个给了 b。这两个对象怎么会都有这两个 URL 呢?
这和第一个错例是同样的问题。创建类定义时,URL 列表将被实例化。该类所有的实例使用相同的列表。在有些时候这种情况是有用的,但大多数时候你并不想这样做。你希望每个对象有一个单独的储存。为此,我们修改代码为:
class URLCatcher(object):
def __init__(self):
self.urls =[]
def add_url(self, url):
self.urls.append(url)
现在,当创建对象时,URL 列表被实例化。当我们实例化两个单独的对象时,它们将分别使用两个单独的列表。
3、 可变的分配错误
这个问题困扰了我一段时间。让我们做出一些改变,并使用另一种可变数据类型 - 字典。
a ={'1':"one",'2':'two'}
现在,假设我们想把这个字典用在别的地方,且保持它的初始数据完整。
b = a
b['3']='three'
简单吧?
现在,让我们看看原来那个我们不想改变的字典 a:
{'1':"one",'2':'two','3':'three'}
哇等一下,我们再看看 b?
{'1':"one",'2':'two','3':'three'}
等等,什么?有点乱……让我们回想一下,看看其它不可变类型在这种情况下会发生什么,例如一个元组:
c =(2,3)
d = c
d =(4,5)
现在 c 是 (2, 3),而 d 是 (4, 5)。
这个函数结果如我们所料。那么,在之前的例子中到底发生了什么?当使用可变类型时,其行为有点像 C 语言的一个指针。在上面的代码中,我们令 b = a,我们真正表达的意思是:b 成为 a 的一个引用。它们都指向 Python 内存中的同一个对象。听起来有些熟悉?那是因为这个问题与先前的相似。
列表也会发生同样的事吗?是的。那么我们如何解决呢?这必须非常小心。如果我们真的需要复制一个列表进行处理,我们可以这样做:
这将遍历并复制列表中的每个对象的引用,并且把它放在一个新的列表中。但是要注意:如果列表中的每个对象都是可变的,我们将再次获得它们的引用,而不是完整的副本。
假设在一张纸上列清单。在原来的例子中相当于,A 某和 B 某正在看着同一张纸。如果有个人修改了这个清单,两个人都将看到相同的变化。当我们复制引用时,每个人现在有了他们自己的清单。但是,我们假设这个清单包括寻找食物的地方。如果“冰箱”是列表中的第一个,即使它被复制,两个列表中的条目也都指向同一个冰箱。所以,如果冰箱被 A 修改,吃掉了里面的大蛋糕,B 也将看到这个蛋糕的消失。这里没有简单的方法解决它。只要你记住它,并编写代码的时候,使用不会造成这个问题的方式。
字典以相同的方式工作,并且你可以通过以下方式创建一个昂贵副本:
再次说明,这只会创建一个新的字典,指向原来存在的相同的条目。因此,如果我们有两个相同的列表,并且我们修改字典 a 的一个键指向的可变对象,那么在字典 b 中也将看到这些变化。
可变数据类型的麻烦也是它们强大的地方。以上都不是实际中的问题;它们是一些要注意防止出现的问题。在第三个项目中使用昂贵复制操作作为解决方案在 99% 的时候是没有必要的。
总结
以上就是本文关于浅谈使用Python变量时要避免的3个错误的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26