京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据库发展呈现三个主要特征
数据库(Databases,简称DB)是指长期保存在计算机的存储设备上、并按照某种模型组织起来的、可以被各种用户或应用共享的数据的集合。数据库管理系统(Database Management Systems,简称DBMS)是指提供各种数据管理服务的计算机软件系统,这种服务包括数据对象定义、数据存储与备份、数据访问与更新、数据统计与分析、数据安全保护、数据库运行管理以及数据库建立和维护等。
由于企业信息化的目的就是要以现代信息技术为手段,对伴随着企业生产和经营过程而产生的数据进行收集、加工、管理和利用,以改善企业生产经营的整体效率,增强企业的竞争力。所以,数据库是企业信息化不可缺少的工具,是绝大部分企业信息系统的核心。
纵观数据库发展,三大数据库巨头公司纷纷推出其最新产品,数据库市场竞争日益加剧。从最新的IDC报告显示,在关系数据库管理系统(RDBMS)软件市场上,Oracle继续领先对手IBM和微软,但是微软在2006年取得了更快的销售增长率……
根据对数据库发展的技术趋势不难看出,整个数据库发展呈现出了三个主要特征:
(1)、支持XML数据格式
IBM公司在它新推出的DB2 9版本中,直接把对XML的支持作为其新产品的最大卖点,号称是业内第一个同时支持关系型数据和XML数据的混合数据库,无需重新定义XML数据的格式,或将其置于数据库大型对象的前提下,IBM DB2 9允许用户无缝管理普通关系数据和纯XML数据。
对于传统关系型数据与层次型数据的混合应用已经成为了新一代数据库产品所不可或缺的特点。除了IBM,Oracle和微软也同时宣传了它们的产品也可以实现高性能XML存储与查询,使现有应用更好的与XML共存。
(2)、商业智能成重点
为应对日益加剧的商业竞争,企业不断增加内部IT及信息系统,使企业的商业数据成几何数量级不断递增,如何能够从这些海量数据中获取更多的信息,以便分析决策将数据转化为商业价值,就成为目前数据库厂商关注的焦点。各数据库厂商在新推出的产品中,纷纷表示自己的产品在商业智能方面有很大提高。如:微软最新版SQL Server 2005就集成了完整的商业智能套件,包括数据仓库、数据分析、ETL工具、报表及数据挖掘等,并有针对性的做了一些优化。如何更好的支持商业智能将是未来数据库产品发展的主要趋势之一。
(3)、SOA架构支持
SOA已经成为目前IT业内的一个大的发展趋势,最初IBM和BEA是该理念的主要推动者,后来有越来越多的企业加入,开始宣称支持SOA,其中包括Oracle,而微软开始并不是非常赞同SOA的,但是,随着时间的发展,目前国内主流的数据库厂商都开始宣称他们的产品是完全支持SOA架构的,包括微软的SQL Server 2005,从微软态度的转变可以看出,未来IT业的发展与融合,SOA正在成长为一个主流的趋势。
数据库管理系统已经成为软件产业的重要组成部分,是信息化过程中最重要的技术基础之一。我国要振兴软件产业,就必须发展自己的数据库软件产业。这已经获得了广泛的共识,目前要解决的关键问题是如何能够“做得出、用得上、卖得掉”。我们认为,数据库软件的发展将仍然是关系系统内核基础上进行扩展的技术路线。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17