京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”概念价值提升 带热数据产业链
大数据”概念价值提升,带热数据产业链
数据本身是什么,我们并不陌生。IT经济社会出现之后,数据成了大家火热关注的问题。从行业角度看,在互联网高速发展的十几年中,数据处理技术日新月异,加上移动互联和物联网技术和商业模式的新机遇,加速了数据的产生速度,数据存储量开始爆炸式增长。“大数据”概念应运而生。
然而“大数据”概念出现之前,数据分析、数据处理等数据库领域技术在不温不火中持续发展。也出现了数据仓库、BI等新技术概念。但从媒体角度看却没有获得关注焦点。直到“大数据”概念出现,将整个数据领域推至最高点,成为全球关注的热点概念。
对于这一现象,武新表示:互联网的出现,从技术角度和商业模式上颠覆了传统行业的经营状况,我们每个人的生活方式,也在互联网和移动互联网的推动下发生根本变化。除去概念炒作的影响外,可以说“大数据”概念提升了数据本身的价值。数据本身没有模型,或者说没有一个量化的方法。因此,我们无法给出一个明确的价格;但是,在大数据的推动下,企业对数据的重视程度进一步提升,让我们看到了数据的价值体现和资源地位。
除此之外,数据仓库、BI等早早出现的技术,在“大数据”的带动下在应用上更加活跃。接下来的大数据时代,是人类信息社会的收官阶段。之前的计算机时代和互联网时代,都是为大数据时代做铺垫和准备的。计算机时代的核心是计算能力,极大提高了人们对数据的处理能力;互联网时代解决了信息移动和连接的问题;而大数据时代,可将世界万事万物通通数据化,让人们在数据利用中优化现实操作和行为,令全球系统的运行更为高效。
所以说“大数据”的出现,不仅开启了数据领域的极速发展。对该领域的开发者而言,也迎来了最佳发展阶段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27