京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据存在于互联网之中
互联网技术从深层次、具体化的角度解读可以分为:大数据、P2P人人组织网络和两面市场。其中大数据是最重要的因素之一。金融没有类似实物的物理生产、仓储、物流等过程,但其本身是数据的生产、仓储、挖掘、传输、分析和集成。所以大数据对于金融而言,相比其他行业,无疑是有更巨大的影响力。
大数据,是思维、技术与数据的三足鼎立。大数据不仅指规模庞大的数据,它首先是一种思维方式的变化,其次是对这些数据的处理和应用,是数据、处理技术与应用三者的统一的一列处理技术,最后,大数据的前提必然是充裕互通的数据本身。
大数据的思维方式会改变传统金融作业思维,它首先是会改变金融信贷业的抵押文化,推动信用变现成为可能和主流。尤其是中国金融行业,有着根深蒂固的抵押文化,在贷款的过程中严重依赖于抵押物,这是中小企业得不到贷款服务的很重要原因。抵押文化让贷款服务提供方在考量时思维变得简单粗暴。贷款方的考量核心是判断抵押物品的价值,确保有相应的价值空间。比如房产价值200万,那么打个7折,只要保证价值不下跌太厉害,那么就不会产生风险。房价不下跌,风险不大;房价下跌,也是国家的事情,与银行机构无关。
长期而言,抵押文化对金融业发展有相当负面的影响。要想做到真正的改变就是要强化信用贷款,建立信用机制。真正的安全不是抵押物,而是人们的信用。我们讲大数据对金融影响,首先要有思维上的认识变化。
信用看不见,摸不着,但大数据的方式可以帮助还原一个人,甚至一群人的信用轮廓,让个人或者群体的信用变得金光灿灿,触手可及。这将是根本性的改变,并产生巨大的影响。大数据的应用例子中,对于天气预报的实践是人们津津乐道的——没有人可以准确地预测天气,因为变量太多,大到日月星展,中到洋流大气,小到人的环境行为的偶然因素,都会对其产生影响,但气象学家通过气象大数据的分析,加上并行的处理技术,人们做到了从数据中找到规律,实现更准确的气象预测。个人的信用评估和实现气象预测有非常类似之处,一个人或者群体的信用好坏取决于很多的变量,而且信用本身不是静态的,而是一个动态的行为特征的体现——资产、收入、消费、个性、习惯、社交网络等等都是会对信用产生影响。个体信用正式通过各种行为决定的,但是体现一个人的信用的行为并非是全无规律的。通过大数据,可以很好地通过对个体或者群体的大量信用行为进行收集、整理、分析,只要把这些糅合在一起时,会发现很多客观规律,使得人的信用立体化,从而实现对于个体或群体信用的预计。
互联网技术革新本身也推动了大数据成为可能。云计算、SNS、移动互联网等技术的发展,使得大量数据的生产和连通变成现实;非结构化数据库技术的发展,使得数据收集的要求大大降低;存储技术的发展,使得大规模数据存储得以实现;并行处理计算,使得数据可以得到高速处理,更快获得结果、应用;各种算法、机器智能化学习的成熟等等又进一步促进大数据的应用发展。所以,我们可以做到存储处理所有数据,而不是存储抽样数据,并且可以将粒度从整体面向个体。这些也带来一系列变革——
——市场集中度更高。IT技术的发展、互联网的延伸、大数据的应用,让市场摆脱了地域的限制,从而使得更大规模的企业以更快的速度成长。而大数据在技术上的突破也会使得马太效应更加明显——强者愈强,大者愈大。如果我们还是局限于地域优势,无法有效形成对海量用户和良好的数据资产的管理,那么未来核心竞争力将会受到严重削弱。
——促进金融的开放性,大数据首先要数据全量在线。现在太多系统都是孤立的,比如很多公共事业数据,即使银行本身的很多业务,比如对公业务、对私业务、卡业务等都是相互分离的难以形成联动效应;况且决定信用本身的不单是金融数据,很多其他领域的数据也会产生影响,这对于数据的开放性要求更高。但这些数据都可以借助互联网进行联通,互联网有天生的开放性、透明性,使得大数据的应用有了可能。传统的金融业也必然会因此而变化。
——最后,还是数据本身。既然是大数据,必须要有足够的大量数据,这是一切预测的大前提。如何在预测之前收集足够多的信息,就成了预测成功与否的关键。
一切皆可“量化”,并在加速量化,几十年来IT技术的发展已经使得大量数据量化。
互联网金融对大数据的使用,天生具有优势。互联网可以在法律和道德所容许的范围内捕捉信用评估所需要的个人或群体的行为信息,并将这些繁杂的信息提供给大数据作业系统进行处理,完成对个人或群体的信用价值的评估分析。从这个角度来说,P2P在对信用大数据的使用方面更有独特优势,由于P2P两面市场的特点,决定了它可以覆盖更多的用户,同时由于充分利用了人人组织的特点,可以让用户自己产生数据,从而实现数据的自我产生和循环。使得“取之不尽,用之不竭”的数据创新成为现实。
虽然这场大数据带来的变革,还是早期,但我们可以清晰预见大数据对于金融的影响——金融服务将进一步从粗放式管理向精细化管理转型。由抵押文化向信用文化转变更全面的信用体制和风险管理体制将会建立;从“利润为中心”向“客户为中心”转型。从“关注整体”向“关注个体”转型。
我们还可以预见,真正能带来改变的互联网金融、大数据金融一定是由深谙互联网思维,立足小额信用贷款服务,涉及海量用户,注重数据资产,耐心长远的公司所推动的。只有这样,才是符合大数据的趋势,才能拥有长期的核心竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22