
Python操作MySQL数据库9个实用实例
在Windows平台上安装mysql模块用于Python开发
用python连接mysql的时候,需要用的安装版本,源码版本容易有错误提示。下边是打包了32与64版本。
MySQL-python-1.2.3.win32-py2.7.exe
MySQL-python-1.2.3.win-amd64-py2.7.exe
实例 1、取得 MYSQL 的版本
# -*- coding: UTF-8 -*-
#安装 MYSQL DB for python
import MySQLdb as mdb
con = None
try:
#连接 mysql 的方法: connect('ip','user','password','dbname')
con = mdb.connect('localhost', 'root','root', 'test');
#所有的查询,都在连接 con 的一个模块 cursor 上面运行的
cur = con.cursor()
#执行一个查询
cur.execute("SELECT VERSION()")
#取得上个查询的结果,是单个结果
data = cur.fetchone()
print "Database version : %s " % data
finally:
if con:
#无论如何,连接记得关闭
con.close()
实例 2、创建一个表并且插入数据
import MySQLdb as mdb
import sys
#将 con 设定为全局连接
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#获取连接的 cursor,只有获取了 cursor,我们才能进行各种操作
cur = con.cursor()
#创建一个数据表 writers(id,name)
cur.execute("CREATE TABLE IF NOT EXISTS \
Writers(Id INT PRIMARY KEY AUTO_INCREMENT, Name VARCHAR(25))")
#以下插入了 5 条数据
cur.execute("INSERT INTO Writers(Name) VALUES('Jack London')")
cur.execute("INSERT INTO Writers(Name) VALUES('Honore de Balzac')")
cur.execute("INSERT INTO Writers(Name) VALUES('Lion Feuchtwanger')")
cur.execute("INSERT INTO Writers(Name) VALUES('Emile Zola')")
cur.execute("INSERT INTO Writers(Name) VALUES('Truman Capote')")
实例 3、 python 使用 slect 获取 mysql 的数据并遍历
import MySQLdb as mdb
import sys
#连接 mysql,获取连接的对象
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#仍然是,第一步要获取连接的 cursor 对象,用于执行查询
cur = con.cursor()
#类似于其他语言的 query 函数, execute 是 python 中的执行查询函数
cur.execute("SELECT * FROM Writers")
#使用 fetchall 函数,将结果集(多维元组)存入 rows 里面
rows = cur.fetchall()
#依次遍历结果集,发现每个元素,就是表中的一条记录,用一个元组来显示
for row in rows:
print row
运行结果:
(1L, ‘Jack London')
(2L, ‘Honore de Balzac')
(3L, ‘Lion Feuchtwanger')
(4L, ‘Emile Zola')
(5L, ‘Truman Capote')
上面的代码,用来将所有的结果取出,不过打印的时候是每行一个元祖打印,现在我们使用方法,取出其中的单个数据:
import MySQLdb as mdb
import sys
#获取 mysql 的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#获取执行查询的对象
cur = con.cursor()
#执行那个查询,这里用的是 select 语句
cur.execute("SELECT * FROM Writers")
#使用 cur.rowcount 获取结果集的条数
numrows = int(cur.rowcount)
#循环 numrows 次,每次取出一行数据
for i in range(numrows):
#每次取出一行,放到 row 中,这是一个元组(id,name)
row = cur.fetchone()
#直接输出两个元素
print row[0], row[1]
运行结果:
1 Jack London
2 Honore de Balzac
3 Lion Feuchtwanger
4 Emile Zola
5 Truman Capote
实例 4、使用字典 cursor 取得结果集(可以使用表字段名字访问值)
import MySQLdb as mdb
import sys
#获得 mysql 查询的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取连接上的字典 cursor,注意获取的方法,
#每一个 cursor 其实都是 cursor 的子类
cur = con.cursor(mdb.cursors.DictCursor)
#执行语句不变
cur.execute("SELECT * FROM Writers")
#获取数据方法不变
rows = cur.fetchall()
#遍历数据也不变(比上一个更直接一点)
for row in rows:
#这里,可以使用键值对的方法,由键名字来获取数据
print "%s %s" % (row["Id"], row["Name"])
实例 5、获取单个表的字段名和信息的方
import MySQLdb as mdb
import sys
#获取数据库的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取普通的查询 cursor
cur = con.cursor()
cur.execute("SELECT * FROM Writers")
rows = cur.fetchall()
#获取连接对象的描述信息
desc = cur.description
print 'cur.description:',desc
#打印表头,就是字段名字
print "%s %3s" % (desc[0][0], desc[1][0])
for row in rows:
#打印结果
print "%2s %3s" % row
运行结果:
cur.description: ((‘Id', 3, 1, 11, 11, 0, 0), (‘Name', 253, 17, 25, 25, 0, 1))
Id Name
1 Jack London
2 Honore de Balzac
3 Lion Feuchtwanger
4 Emile Zola
5 Truman Capote
实例 6、使用 Prepared statements 执行查询(更安全方便)
import MySQLdb as mdb
import sys
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
cur = con.cursor()
#我们看到,这里可以通过写一个可以组装的 sql 语句来进行
cur.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Guy de Maupasant", "4"))
#使用 cur.rowcount 获取影响了多少行
print "Number of rows updated: %d" % cur.rowcount
结果:
Number of rows updated: 1
实例 7、把图片用二进制存入 MYSQL
有人喜欢把图片存入 MYSQL(这种做法貌似很少吧),我看大部分的程序,图片都是存放在服务器上的文件,数据库中存的只是图片的地址而已,不过 MYSQL 是支持把图片存入数据库的,也相应的有一个专门的字段 BLOB (Binary Large Object),即较大的二进制对象字段,请看如下程序,注意测试图片自己随便找一个,地址要正确:
首先,在数据库中创建一个表,用于存放图片:
复制代码 代码如下:
CREATE TABLE Images(Id INT PRIMARY KEY AUTO_INCREMENT, Data MEDIUMBLOB);
然后运行如下 PYTHON 代码进行:
import MySQLdb as mdb
import sys
try:
#用读文件模式打开图片
fin = open("../web.jpg")
#将文本读入 img 对象中
img = fin.read()
#关闭文件
fin.close()
except IOError, e:
#如果出错,打印错误信息
print "Error %d: %s" % (e.args[0],e.args[1])
sys.exit(1)
try:
#链接 mysql,获取对象
conn = mdb.connect(host='localhost',user='root',passwd='root',
db='test')
#获取执行 cursor
cursor = conn.cursor()
#直接将数据作为字符串,插入数据库
cursor.execute("INSERT INTO Images SET Data='%s'" %
mdb.escape_string(img))
#提交数据
conn.commit()
#提交之后,再关闭 cursor 和链接
cursor.close()
conn.close()
except mdb.Error, e:
#若出现异常,打印信息
print "Error %d: %s" % (e.args[0],e.args[1])
sys.exit(1)
实例 8、从数据库中把图片读出来
import MySQLdb as mdb
import sys
try:
#连接 mysql,获取连接的对象
conn = mdb.connect('localhost', 'root', 'root', 'test');
cursor = conn.cursor()
#执行查询该图片字段的 SQL
cursor.execute("SELECT Data FROM Images LIMIT 1")
#使用二进制写文件的方法,打开一个图片文件,若不存在则自动创建
fout = open('image.png','wb')
#直接将数据如文件
fout.write(cursor.fetchone()[0])
#关闭写入的文件
fout.close()
#释放查询数据的资源
cursor.close()
conn.close()
except IOError, e:
#捕获 IO 的异常 ,主要是文件写入会发生错误
print "Error %d: %s" % (e.args[0],e.args[1])
sys.exit(1)
实例 9、使用 Transaction 即事务(手动提交,自动回滚)
import MySQLdb as mdb
import sys
try:
#连接 mysql,获取连接的对象
conn = mdb.connect('localhost', 'root', 'root', 'test');
cursor = conn.cursor()
#如果某个数据库支持事务,会自动开启
#这里用的是 MYSQL,所以会自动开启事务(若是 MYISM 引擎则不会)
cursor.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Leo Tolstoy", "1"))
cursor.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Boris Pasternak", "2"))
cursor.execute("UPDATE Writer SET Name = %s WHERE Id = %s",
("Leonid Leonov", "3"))
#事务的特性 1、原子性的手动提交
conn.commit()
cursor.close()
conn.close()
except mdb.Error, e:
#如果出现了错误,那么可以回滚,就是上面的三条语句要么执行,要么都不执行
conn.rollback()
print "Error %d: %s" % (e.args[0],e.args[1])
结果:
1、因为不存在 writer 表( SQL 第三条语句),所以出现错误:Error 1146: Table ‘test.writer' doesn't exist
2、出现错误,出发异常处理, 3 条语句的前两条会自动变成了没有执行,结果不变
3、如果本代码放到一个 MyISAM 引擎表,前两句会执行,第三句不会;如果是 INNDB 引擎,则都不会执行。
以上就是为大家分享的9个实用的Python操作MySQL数据库实例,希望对大家的学习有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13