京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python操作MySQL数据库9个实用实例
在Windows平台上安装mysql模块用于Python开发
用python连接mysql的时候,需要用的安装版本,源码版本容易有错误提示。下边是打包了32与64版本。
MySQL-python-1.2.3.win32-py2.7.exe
MySQL-python-1.2.3.win-amd64-py2.7.exe
实例 1、取得 MYSQL 的版本
# -*- coding: UTF-8 -*-
#安装 MYSQL DB for python
import MySQLdb as mdb
con = None
try:
#连接 mysql 的方法: connect('ip','user','password','dbname')
con = mdb.connect('localhost', 'root','root', 'test');
#所有的查询,都在连接 con 的一个模块 cursor 上面运行的
cur = con.cursor()
#执行一个查询
cur.execute("SELECT VERSION()")
#取得上个查询的结果,是单个结果
data = cur.fetchone()
print "Database version : %s " % data
finally:
if con:
#无论如何,连接记得关闭
con.close()
实例 2、创建一个表并且插入数据
import MySQLdb as mdb
import sys
#将 con 设定为全局连接
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#获取连接的 cursor,只有获取了 cursor,我们才能进行各种操作
cur = con.cursor()
#创建一个数据表 writers(id,name)
cur.execute("CREATE TABLE IF NOT EXISTS \
Writers(Id INT PRIMARY KEY AUTO_INCREMENT, Name VARCHAR(25))")
#以下插入了 5 条数据
cur.execute("INSERT INTO Writers(Name) VALUES('Jack London')")
cur.execute("INSERT INTO Writers(Name) VALUES('Honore de Balzac')")
cur.execute("INSERT INTO Writers(Name) VALUES('Lion Feuchtwanger')")
cur.execute("INSERT INTO Writers(Name) VALUES('Emile Zola')")
cur.execute("INSERT INTO Writers(Name) VALUES('Truman Capote')")
实例 3、 python 使用 slect 获取 mysql 的数据并遍历
import MySQLdb as mdb
import sys
#连接 mysql,获取连接的对象
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#仍然是,第一步要获取连接的 cursor 对象,用于执行查询
cur = con.cursor()
#类似于其他语言的 query 函数, execute 是 python 中的执行查询函数
cur.execute("SELECT * FROM Writers")
#使用 fetchall 函数,将结果集(多维元组)存入 rows 里面
rows = cur.fetchall()
#依次遍历结果集,发现每个元素,就是表中的一条记录,用一个元组来显示
for row in rows:
print row
运行结果:
(1L, ‘Jack London')
(2L, ‘Honore de Balzac')
(3L, ‘Lion Feuchtwanger')
(4L, ‘Emile Zola')
(5L, ‘Truman Capote')
上面的代码,用来将所有的结果取出,不过打印的时候是每行一个元祖打印,现在我们使用方法,取出其中的单个数据:
import MySQLdb as mdb
import sys
#获取 mysql 的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#获取执行查询的对象
cur = con.cursor()
#执行那个查询,这里用的是 select 语句
cur.execute("SELECT * FROM Writers")
#使用 cur.rowcount 获取结果集的条数
numrows = int(cur.rowcount)
#循环 numrows 次,每次取出一行数据
for i in range(numrows):
#每次取出一行,放到 row 中,这是一个元组(id,name)
row = cur.fetchone()
#直接输出两个元素
print row[0], row[1]
运行结果:
1 Jack London
2 Honore de Balzac
3 Lion Feuchtwanger
4 Emile Zola
5 Truman Capote
实例 4、使用字典 cursor 取得结果集(可以使用表字段名字访问值)
import MySQLdb as mdb
import sys
#获得 mysql 查询的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取连接上的字典 cursor,注意获取的方法,
#每一个 cursor 其实都是 cursor 的子类
cur = con.cursor(mdb.cursors.DictCursor)
#执行语句不变
cur.execute("SELECT * FROM Writers")
#获取数据方法不变
rows = cur.fetchall()
#遍历数据也不变(比上一个更直接一点)
for row in rows:
#这里,可以使用键值对的方法,由键名字来获取数据
print "%s %s" % (row["Id"], row["Name"])
实例 5、获取单个表的字段名和信息的方
import MySQLdb as mdb
import sys
#获取数据库的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取普通的查询 cursor
cur = con.cursor()
cur.execute("SELECT * FROM Writers")
rows = cur.fetchall()
#获取连接对象的描述信息
desc = cur.description
print 'cur.description:',desc
#打印表头,就是字段名字
print "%s %3s" % (desc[0][0], desc[1][0])
for row in rows:
#打印结果
print "%2s %3s" % row
运行结果:
cur.description: ((‘Id', 3, 1, 11, 11, 0, 0), (‘Name', 253, 17, 25, 25, 0, 1))
Id Name
1 Jack London
2 Honore de Balzac
3 Lion Feuchtwanger
4 Emile Zola
5 Truman Capote
实例 6、使用 Prepared statements 执行查询(更安全方便)
import MySQLdb as mdb
import sys
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
cur = con.cursor()
#我们看到,这里可以通过写一个可以组装的 sql 语句来进行
cur.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Guy de Maupasant", "4"))
#使用 cur.rowcount 获取影响了多少行
print "Number of rows updated: %d" % cur.rowcount
结果:
Number of rows updated: 1
实例 7、把图片用二进制存入 MYSQL
有人喜欢把图片存入 MYSQL(这种做法貌似很少吧),我看大部分的程序,图片都是存放在服务器上的文件,数据库中存的只是图片的地址而已,不过 MYSQL 是支持把图片存入数据库的,也相应的有一个专门的字段 BLOB (Binary Large Object),即较大的二进制对象字段,请看如下程序,注意测试图片自己随便找一个,地址要正确:
首先,在数据库中创建一个表,用于存放图片:
复制代码 代码如下:
CREATE TABLE Images(Id INT PRIMARY KEY AUTO_INCREMENT, Data MEDIUMBLOB);
然后运行如下 PYTHON 代码进行:
import MySQLdb as mdb
import sys
try:
#用读文件模式打开图片
fin = open("../web.jpg")
#将文本读入 img 对象中
img = fin.read()
#关闭文件
fin.close()
except IOError, e:
#如果出错,打印错误信息
print "Error %d: %s" % (e.args[0],e.args[1])
sys.exit(1)
try:
#链接 mysql,获取对象
conn = mdb.connect(host='localhost',user='root',passwd='root',
db='test')
#获取执行 cursor
cursor = conn.cursor()
#直接将数据作为字符串,插入数据库
cursor.execute("INSERT INTO Images SET Data='%s'" %
mdb.escape_string(img))
#提交数据
conn.commit()
#提交之后,再关闭 cursor 和链接
cursor.close()
conn.close()
except mdb.Error, e:
#若出现异常,打印信息
print "Error %d: %s" % (e.args[0],e.args[1])
sys.exit(1)
实例 8、从数据库中把图片读出来
import MySQLdb as mdb
import sys
try:
#连接 mysql,获取连接的对象
conn = mdb.connect('localhost', 'root', 'root', 'test');
cursor = conn.cursor()
#执行查询该图片字段的 SQL
cursor.execute("SELECT Data FROM Images LIMIT 1")
#使用二进制写文件的方法,打开一个图片文件,若不存在则自动创建
fout = open('image.png','wb')
#直接将数据如文件
fout.write(cursor.fetchone()[0])
#关闭写入的文件
fout.close()
#释放查询数据的资源
cursor.close()
conn.close()
except IOError, e:
#捕获 IO 的异常 ,主要是文件写入会发生错误
print "Error %d: %s" % (e.args[0],e.args[1])
sys.exit(1)
实例 9、使用 Transaction 即事务(手动提交,自动回滚)
import MySQLdb as mdb
import sys
try:
#连接 mysql,获取连接的对象
conn = mdb.connect('localhost', 'root', 'root', 'test');
cursor = conn.cursor()
#如果某个数据库支持事务,会自动开启
#这里用的是 MYSQL,所以会自动开启事务(若是 MYISM 引擎则不会)
cursor.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Leo Tolstoy", "1"))
cursor.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Boris Pasternak", "2"))
cursor.execute("UPDATE Writer SET Name = %s WHERE Id = %s",
("Leonid Leonov", "3"))
#事务的特性 1、原子性的手动提交
conn.commit()
cursor.close()
conn.close()
except mdb.Error, e:
#如果出现了错误,那么可以回滚,就是上面的三条语句要么执行,要么都不执行
conn.rollback()
print "Error %d: %s" % (e.args[0],e.args[1])
结果:
1、因为不存在 writer 表( SQL 第三条语句),所以出现错误:Error 1146: Table ‘test.writer' doesn't exist
2、出现错误,出发异常处理, 3 条语句的前两条会自动变成了没有执行,结果不变
3、如果本代码放到一个 MyISAM 引擎表,前两句会执行,第三句不会;如果是 INNDB 引擎,则都不会执行。
以上就是为大家分享的9个实用的Python操作MySQL数据库实例,希望对大家的学习有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27