京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代信用卡产业怎么玩
大数据时代已经降临,它所带来的庞大数据资源和信息风暴为信用卡产业的发展带来了很多新的挑战和契机。在大数据时代的背景之下,银行机构如何对海量的客户数据善加利用,为信用卡用户提供差异化的服务,通过个性化的营销活动实现客户关系管理的最大价值,恐怕是眼下这个时代银行信用卡产业所面临的最大挑战之一。
事实上,许多银行在全方位了解自己的客户并与客户保持联系方面存在困难。银行积极地与客户开展互动,希望通过这种互动为银行带来盈利,然而在营销投资方面的回报却往往不尽如人意。
要为客户提供差异性的服务,银行必须先基于客户特性设定不同的策略,客户细分是协助银行将不同特性的客户进行分类的方法。目前银行通常会依据不同的业务目标产生不同的客户细分,进而搭配不同的业务手段与客户进行沟通,提供适当的产品服务以满足其需求。基于不同的目的,在银行中所建立的客户细分会随着时间而不断增加,业务人员可以依据每次活动的目的而组合产生适当的目标客户群。此外,不同的客户轮廓,不同的偏好,不同的生命周期都会影响对待方式。
大数据具有4V的特点,Volume(巨量),Variety(多样性),Vaule(价值),Velocity(处理速度快)。加上智能手机引领着网络时代来临,单纯以银行数据做好挖掘客户或细分各种静态或动态的客户群还不足以使银行在变化的市场中提高竞争力。一些先进的银行除了客户行为、产品持有等信息外,还会在分析的深度和广度上做文章,加入客户透过各渠道的查询、投诉、线上/线下行为,服务周期水平或是获取社交网络/微博对话反应等数据挖掘出有价值的信息,再运用客户需求分析方法论,精准地分析出客户需求与个性化的最适销售产品给客户。即当客户主动透过不同渠道作交易服务的同时,实时互动提供个性化最适产品推荐,不但降低营销成本,也能化解客户的防备心、提高成功率。如果能实现动态模型评分,以客户当下行为的时点驱动模型评分,还考虑最近网路浏览行为,而不仅是以上个月的模型结果来判定,这样才能真正了解客户需求做到实时的最适产品推荐。在此基础上辅以系统层面的强大支持,将分析结果推送至前台各渠道,再接收客户反馈信息,更精准的分析客户下一次需求,协同整合所有客户接触的渠道都能得到一致的最适产品推荐信息……从而形成一个互动-分析-产品提供-产品使用的良性循环。只有便捷的分析工具与营销管理无缝地整合,让银行分析巨量与多样性数据,快速地反应对客户360度真实行为的理解,进而预测客户未来行为,洞见出全新营销策略,才能赢得先机。
此外,绩效评估体系也十分重要,应能够在事前、事中、事后,了解结果。一般银行机构仅重视业绩、产品销售达成效果,难以提供目前活动需要修正哪些环节方能继续推广等决策所需的效果评估报告。最主要原因是,没有收集客户透过各渠道反馈与联系信息、渠道联系沟通的结果,作为营销活动修正优化的基础。只有获得渠道反馈信息,才能更进一步作出活动修正或取消决策,提高成功效率。
例如国内某股份制银行信用卡中心面临不活跃客户较多的难题,同时需要更加合理的规划市场活动的预算,提高投资回报率。在客户智能解决方案的帮助下,该中心对客户用卡行为、习惯等历史数据及过往市场营销活动的数据进行了分析,针对不同类别的客户分别建立了自然活跃率模型和市场活动敏感度模型,并分别实施三组不同的市场活动:对自然活跃度高和对价格敏感的客户采用高消费门槛去触动;对自然活跃率低且对价格不敏感的客户,则通过与刷卡次数绑定的礼品来进行激励;对于反应居中的客户则通过两方面兼顾的市场活动来进行激励。在项目进行过程中先根据建立的模型进行小规模验证,在确认验证结果与之前的预估基本吻合后,才按照预定方案进行大规模的市场营销活动,并在活动过程中不断根据实际反馈修正模型,再根据修正后的模型进行新一轮的活动,从而使整个营销活动效果与之前的预估十分接近。最终项目获得了极大的成功--在进行市场活动三个月以后不活跃客户的激活率提升了40%,大大超出了20%的原定目标,是项目实施前激活率的四倍;市场营销预算得到了优化,费用下降了7%。
综上所述,企业级的客户智能解决方案必须拥有灵活查询分析与数据挖掘工具,协助洞察客户需求,支持各种不同类型的营销方式,才能帮助银行打造具有竞争力的营销管理平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12