
Python字典,函数,全局变量代码解析
字典
dict1 = {'name':'han','age':18,'class':'first'}
print(dict1.keys()) #打印所有的key值
print(dict1.values()) #打印所有的values值
print("dict1['name']:",dict1['name']) #打印name相对应的value值
print(dict1.get('name')) #通过字典的get方法得到name相对应的value值
dict1['age']=28 #字典的修改相当于重新赋值!!!
dict1['address']='beijing' #字典的增加是:dict[key] = value 这样的形式
del dict1['name'] #删除字典中的一个元素
dict1.clear() #字典的清空,返回一个空字典
# del dict1 #删除字典,字典就完全删除了
字典用法注意:
1、键是不允许相同的,如果相同,后面的会覆盖前面的
2、键是不可变的,所以只能用数字、字符串、元组来担当
dict2 = {(1,2):5,"元组":(4,5)} #字典里的元素只能用不可变的数据类型!!!
print(dict2)
print(dict2['元组'])
print(dict2[(1,2)])
for i in dict2.keys(): #取出的数值更干净!!!谨记老师教导
print("字典中的key值为:",i)
for j in dict2.values():
print("字典中的values值为:",j)
函数
1、函数的定义
函数是实现特定功能而封装起来的一组语句块,可以被用户调用
2、函数的分类
自定义函数;预定义函数(系统自带,lib自带)
3、使用函数的好处
降低编程难度、将大问题分解为若干小问题、可以多次调用
4、函数语法
定义
def函数名字(参数):
函数体
return语句#不带表达式的return相当于返回none
调用
函数名字
以下是函数的几种:
#定义函数,函数名最好以_分割
def print_str(str):
print(str)
return
# 调用函数
print_str("调用一下")
# 函数传递
#所有参数在python里都是按引用传递
#一句话:要变都变!!!
def charge_me(mylist):
mylist.append([1,2,3,4])
print("函数内取值:",mylist)
return
mylist = [10,20,30]
charge_me(mylist)
print("函数外取值:",mylist) #函数外和函数内打印是相同的!!!
#函数的赋值引用
def print_info(name,age=3):
print("name",name)
print("age",age)
return
# print_info(name="xiao",age=18)
print_info(age=50,name="xiao") #python中颠倒是可以的!!!
print_info(name='haha')
#函数的不定长参数
def p_info(arg1,*vartuple):
print("输出:",arg1)
for var in vartuple:
print(var)
return
p_info(10)
p_info(70,60,50,40,30)
匿名函数lambda,了解即可
# 1、lambda只是一个表达式,而不是一个代码块,函数体比def简单很多。仅仅能在lambda表达式中封装有限的逻辑
# 2、lambda[arg1[,arg2,...argn]]:expression
sum1 = lambda arg1,arg2:arg1+arg2
print("相加后的值为:",sum1(10,20))
# return语句
def sum2(arg1,arg2):
total = arg1+arg2
print("函数内:",total)
return total #把total去掉之后返回none
abc = sum2(10,40)
print("函数外:",abc)
#全局变量和局部变量
#全局变量比较容易出问题,能不用就不用
total = 0
def sum3(a,b):
total = a+b
print("函数内(局部变量)的值为:",total)
return total
# total = sum3(10,400)
sum3(20,70)
print("函数外(全局变量)的值为:",total)
count = 1
def do_st():
global count #全局变量:global
for i in (3,4,5): #循环三次
count += 1
# print(count)
do_st()
print(count)
# 思路:当count=1时进入循环+1并赋值给count
# 在for循环三次后为3+1=4
# count是全局变量,最后打印出的结果为4
小练习
# 不能创建字典的语句是C (字典中的元素不能以列表作为key)
# A、dict1 = {}
# B、dict2 = { 3 : 5 }
# C、dict3 = {[1,2,3]: “uestc”}
# D、dict4 = {(1,2,3): “uestc”}
#以下代码输出什么?输出的是6
# 思路:原始key的值为1,
# copy给另一个字典值为1,
# 重新赋值原来的字典值为5,
# 所以相加等于6
dict1={'1':1,'2':2}
theCopy=dict1.copy()
dict1['1']=5
sum=dict1['1']+theCopy['1']
print(sum)
# 合并生成新的字典
dict1 = {3:"c", 4:"d"}
dict2 = {1:"a", 2:"b"}
dict2.update(dict1) #更新添加dict1进dict2
print(dict2)
# 标准日期输出
a = "20170303"
b = a[:4]
c = a[4:6] #构思:通过列表分割的方式实现
d = a[6:]
print("格式化后输出的日期是:%s年%s月%s日"%(b,c,d))
无return函数,返回什么?
答:在函数中无return函数,返回none
如何在一个function里面设置一个全局的变量?
答:在函数体内定义一个全局的函数global
#随机生成验证码的两种方式:
import random
list1=[]
for i in range(65,91):
list1.append(chr(i)) #通过for循环遍历asii追加到空列表中
for j in range(97,123):
list1.append(chr(j))
for k in range(48,58):
list1.append(chr(k))
ma = random.sample(list1,6)
print(ma) #获取到的为列表
ma = ''.join(ma) #将列表转化为字符串
print(ma)
import random,string
str1 = "0123456789"
str2 = string.ascii_letters
str3 = str1+str2
ma1 = random.sample(str3,6)
ma1 = ''.join(ma1)
print(ma1) #通过引入string模块和random模块使用现有的方法
总结
以上就是本文关于Python字典,函数,全局变量代码解析的全部内容,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26