京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python字典,函数,全局变量代码解析
字典
dict1 = {'name':'han','age':18,'class':'first'}
print(dict1.keys()) #打印所有的key值
print(dict1.values()) #打印所有的values值
print("dict1['name']:",dict1['name']) #打印name相对应的value值
print(dict1.get('name')) #通过字典的get方法得到name相对应的value值
dict1['age']=28 #字典的修改相当于重新赋值!!!
dict1['address']='beijing' #字典的增加是:dict[key] = value 这样的形式
del dict1['name'] #删除字典中的一个元素
dict1.clear() #字典的清空,返回一个空字典
# del dict1 #删除字典,字典就完全删除了
字典用法注意:
1、键是不允许相同的,如果相同,后面的会覆盖前面的
2、键是不可变的,所以只能用数字、字符串、元组来担当
dict2 = {(1,2):5,"元组":(4,5)} #字典里的元素只能用不可变的数据类型!!!
print(dict2)
print(dict2['元组'])
print(dict2[(1,2)])
for i in dict2.keys(): #取出的数值更干净!!!谨记老师教导
print("字典中的key值为:",i)
for j in dict2.values():
print("字典中的values值为:",j)
函数
1、函数的定义
函数是实现特定功能而封装起来的一组语句块,可以被用户调用
2、函数的分类
自定义函数;预定义函数(系统自带,lib自带)
3、使用函数的好处
降低编程难度、将大问题分解为若干小问题、可以多次调用
4、函数语法
定义
def函数名字(参数):
函数体
return语句#不带表达式的return相当于返回none
调用
函数名字
以下是函数的几种:
#定义函数,函数名最好以_分割
def print_str(str):
print(str)
return
# 调用函数
print_str("调用一下")
# 函数传递
#所有参数在python里都是按引用传递
#一句话:要变都变!!!
def charge_me(mylist):
mylist.append([1,2,3,4])
print("函数内取值:",mylist)
return
mylist = [10,20,30]
charge_me(mylist)
print("函数外取值:",mylist) #函数外和函数内打印是相同的!!!
#函数的赋值引用
def print_info(name,age=3):
print("name",name)
print("age",age)
return
# print_info(name="xiao",age=18)
print_info(age=50,name="xiao") #python中颠倒是可以的!!!
print_info(name='haha')
#函数的不定长参数
def p_info(arg1,*vartuple):
print("输出:",arg1)
for var in vartuple:
print(var)
return
p_info(10)
p_info(70,60,50,40,30)
匿名函数lambda,了解即可
# 1、lambda只是一个表达式,而不是一个代码块,函数体比def简单很多。仅仅能在lambda表达式中封装有限的逻辑
# 2、lambda[arg1[,arg2,...argn]]:expression
sum1 = lambda arg1,arg2:arg1+arg2
print("相加后的值为:",sum1(10,20))
# return语句
def sum2(arg1,arg2):
total = arg1+arg2
print("函数内:",total)
return total #把total去掉之后返回none
abc = sum2(10,40)
print("函数外:",abc)
#全局变量和局部变量
#全局变量比较容易出问题,能不用就不用
total = 0
def sum3(a,b):
total = a+b
print("函数内(局部变量)的值为:",total)
return total
# total = sum3(10,400)
sum3(20,70)
print("函数外(全局变量)的值为:",total)
count = 1
def do_st():
global count #全局变量:global
for i in (3,4,5): #循环三次
count += 1
# print(count)
do_st()
print(count)
# 思路:当count=1时进入循环+1并赋值给count
# 在for循环三次后为3+1=4
# count是全局变量,最后打印出的结果为4
小练习
# 不能创建字典的语句是C (字典中的元素不能以列表作为key)
# A、dict1 = {}
# B、dict2 = { 3 : 5 }
# C、dict3 = {[1,2,3]: “uestc”}
# D、dict4 = {(1,2,3): “uestc”}
#以下代码输出什么?输出的是6
# 思路:原始key的值为1,
# copy给另一个字典值为1,
# 重新赋值原来的字典值为5,
# 所以相加等于6
dict1={'1':1,'2':2}
theCopy=dict1.copy()
dict1['1']=5
sum=dict1['1']+theCopy['1']
print(sum)
# 合并生成新的字典
dict1 = {3:"c", 4:"d"}
dict2 = {1:"a", 2:"b"}
dict2.update(dict1) #更新添加dict1进dict2
print(dict2)
# 标准日期输出
a = "20170303"
b = a[:4]
c = a[4:6] #构思:通过列表分割的方式实现
d = a[6:]
print("格式化后输出的日期是:%s年%s月%s日"%(b,c,d))
无return函数,返回什么?
答:在函数中无return函数,返回none
如何在一个function里面设置一个全局的变量?
答:在函数体内定义一个全局的函数global
#随机生成验证码的两种方式:
import random
list1=[]
for i in range(65,91):
list1.append(chr(i)) #通过for循环遍历asii追加到空列表中
for j in range(97,123):
list1.append(chr(j))
for k in range(48,58):
list1.append(chr(k))
ma = random.sample(list1,6)
print(ma) #获取到的为列表
ma = ''.join(ma) #将列表转化为字符串
print(ma)
import random,string
str1 = "0123456789"
str2 = string.ascii_letters
str3 = str1+str2
ma1 = random.sample(str3,6)
ma1 = ''.join(ma1)
print(ma1) #通过引入string模块和random模块使用现有的方法
总结
以上就是本文关于Python字典,函数,全局变量代码解析的全部内容,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27