
本文实例讲述了Python机器学习之决策树算法。分享给大家供大家参考,具体如下:
决策树学习是应用最广泛的归纳推理算法之一,是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终将使用这些从数据集中创造的规则。决策树的优点为:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点为:可能产生过度匹配的问题。决策树适于处理离散型和连续型的数据。
在算法中一般选用ID3,D3算法的核心问题是选取在树的每个节点要测试的特征或者属性,希望选择的是最有助于分类实例的属性。如何定量地衡量一个属性的价值呢?这里需要引入熵和信息增益的概念。熵是信息论中广泛使用的一个度量标准,刻画了任意样本集的纯度。
假设有10个训练样本,其中6个的分类标签为yes,4个的分类标签为no,那熵是多少呢?在该例子中,分类的数目为2(yes,no),yes的概率为0.6,no的概率为0.4,则熵为 :
其中value(A)是属性A所有可能值的集合,是S中属性A的值为v的子集,即
。上述公式的第一项为原集合S的熵,第二项是用A分类S后熵的期望值,该项描述的期望熵就是每个子集的熵的加权和,权值为属于的样本占原始样本S的比例
。所以Gain(S, A)是由于知道属性A的值而导致的期望熵减少。
完整的代码:
# -*- coding: cp936 -*-
from numpy import *
import operator
from math import log
import operator
def createDataSet():
dataSet = [[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no']]
labels = ['no surfacing','flippers']
return dataSet, labels
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {} # a dictionary for feature
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
#print(key)
#print(labelCounts[key])
prob = float(labelCounts[key])/numEntries
#print(prob)
shannonEnt -= prob * log(prob,2)
return shannonEnt
#按照给定的特征划分数据集
#根据axis等于value的特征将数据提出
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
#选取特征,划分数据集,计算得出最好的划分数据集的特征
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #剩下的是特征的个数
baseEntropy = calcShannonEnt(dataSet)#计算数据集的熵,放到baseEntropy中
bestInfoGain = 0.0;bestFeature = -1 #初始化熵增益
for i in range(numFeatures):
featList = [example[i] for example in dataSet] #featList存储对应特征所有可能得取值
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:#下面是计算每种划分方式的信息熵,特征i个,每个特征value个值
subDataSet = splitDataSet(dataSet, i ,value)
prob = len(subDataSet)/float(len(dataSet)) #特征样本在总样本中的权重
newEntropy = prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #计算i个特征的信息熵
#print(i)
#print(infoGain)
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
#如上面是决策树所有的功能模块
#得到原始数据集之后基于最好的属性值进行划分,每一次划分之后传递到树分支的下一个节点
#递归结束的条件是程序遍历完成所有的数据集属性,或者是每一个分支下的所有实例都具有相同的分类
#如果所有实例具有相同的分类,则得到一个叶子节点或者终止快
#如果所有属性都已经被处理,但是类标签依然不是确定的,那么采用多数投票的方式
#返回出现次数最多的分类名称
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
#创建决策树
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]#将最后一行的数据放到classList中,所有的类别的值
if classList.count(classList[0]) == len(classList): #类别完全相同不需要再划分
return classList[0]
if len(dataSet[0]) == 1:#这里为什么是1呢?就是说特征数为1的时候
return majorityCnt(classList)#就返回这个特征就行了,因为就这一个特征
bestFeat = chooseBestFeatureToSplit(dataSet)
print('the bestFeatue in creating is :')
print(bestFeat)
bestFeatLabel = labels[bestFeat]#运行结果'no surfacing'
myTree = {bestFeatLabel:{}}#嵌套字典,目前value是一个空字典
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]#第0个特征对应的取值
uniqueVals = set(featValues)
for value in uniqueVals: #根据当前特征值的取值进行下一级的划分
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
return myTree
#对上面简单的数据进行小测试
def testTree1():
myDat,labels=createDataSet()
val = calcShannonEnt(myDat)
print 'The classify accuracy is: %.2f%%' % val
retDataSet1 = splitDataSet(myDat,0,1)
print (myDat)
print(retDataSet1)
retDataSet0 = splitDataSet(myDat,0,0)
print (myDat)
print(retDataSet0)
bestfeature = chooseBestFeatureToSplit(myDat)
print('the bestFeatue is :')
print(bestfeature)
tree = createTree(myDat,labels)
print(tree)
对应的结果是:
>>> import TREE
>>> TREE.testTree1()
The classify accuracy is: 0.97%
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
[[1, 'yes'], [1, 'yes'], [0, 'no']]
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
[[1, 'no'], [1, 'no']]
the bestFeatue is :
0
the bestFeatue in creating is :
0
the bestFeatue in creating is :
0
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
最好再增加使用决策树的分类函数
同时因为构建决策树是非常耗时间的,因为最好是将构建好的树通过 python 的 pickle 序列化对象,将对象保存在磁盘上,等到需要用的时候再读出
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else: classLabel = valueOfFeat
return classLabel
def storeTree(inputTree,filename):
import pickle
fw = open(filename,'w')
pickle.dump(inputTree,fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename)
return pickle.load(fr)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25