
Python计算字符宽度的方法
本文实例讲述了Python计算字符宽度的方法。分享给大家供大家参考,具体如下:
最近在用python写一个CLI小程序,其中涉及到计算字符宽度,目标是以友好的方式将一个长字符串截取为等宽的片段。
对于unicode字符,python的len函数可以准确的计算其中所包含的字符个数,但是个数并不代表宽度,如:
>>>len(u'你好a')
3
因此无法简单的使用这种方式来计算宽度。
GBK decode
首先我想到GBK编码,00–7F范围内的字符是一字节编码,其余是双字节编码,正好与字符的宽度大体一致,于是有了这样的投机取巧的办法(假设取8个宽度):
>>> a = u'hello你好'
>>> b=a.encode('gbk')
>>> try:
... print b[:8].decode('gbk')
... except:
... print b[:7].decode('gbk')
...
hello你
如代码所示,首先将unicode的字符串进行GBK编码,然后截取8个字节的宽度后尝试用GBK解码,若解码失败,则少截取一个宽度,截取7个字节后使用GBK解码。
虽然初步解决了问题,但是这样做的硬伤很明显。首先代码不优雅,以试错的方式运行;其次GBK所能表示的字符有限,对于大量GBK编码以外的字符无法支持。
East_Asian_Width
徘徊很久之后,偶然发现 Unicode Character Database 标准中有East_Asian_Width 属性,并有以下可能值:
# East_Asian_Width (ea)
ea ; A ; Ambiguous 不确定
ea ; F ; Fullwidth 全宽
ea ; H ; Halfwidth 半宽
ea ; N ; Neutral 中性
ea ; Na ; Narrow 窄
ea ; W ; Wide 宽
其中除A不确定外,F/H/N/Na/W都能很明确的知道宽度,如果保守起见,将A视为宽度为2的话,则很容易给出单个字符的宽度:
>>> import unicodedata
>>> def chr_width(c):
... if (unicodedata.east_asian_width(c) in ('F','W','A')):
... return 2
... else:
... return 1
>>> chr_width(u'你')
2
>>> chr_width(u'a')
1
到现在似乎已经可以满足要求了,但是实际使用中发现属性为A的字符真不少见,最典型的就是中文的双引号:
>>> chr_width(u'”')
2
在大多数等宽字体中,中文双引号都是只占一位宽的,如果一行里有多个中文双引号,则累加的误判宽度将会使截取效果大打折扣,无疑这也不是最好的办法。
urwid的解决方案
urwid 是一个成熟的python终端UI库,它在curses的基础之上包装了类似HTML的控件用以显示文本内容,如果有这方面的开发需求,非常推荐此库,比直接使用curses库方便很多,非常棒的是它对unicode的文本宽度截取非常准确,让我大为惊讶,于是翻开它的源码一探究竟,文本宽度计算方面其核心代码如下:
widths = [
(126, 1), (159, 0), (687, 1), (710, 0), (711, 1),
(727, 0), (733, 1), (879, 0), (1154, 1), (1161, 0),
(4347, 1), (4447, 2), (7467, 1), (7521, 0), (8369, 1),
(8426, 0), (9000, 1), (9002, 2), (11021, 1), (12350, 2),
(12351, 1), (12438, 2), (12442, 0), (19893, 2), (19967, 1),
(55203, 2), (63743, 1), (64106, 2), (65039, 1), (65059, 0),
(65131, 2), (65279, 1), (65376, 2), (65500, 1), (65510, 2),
(120831, 1), (262141, 2), (1114109, 1),
]
def get_width( o ):
"""Return the screen column width for unicode ordinal o."""
global widths
if o == 0xe or o == 0xf:
return 0
for num, wid in widths:
if o <= num:
return wid
return 1
如代码所示,首先根据unicode的官方EastAsianWidth 文档整理出字符宽度的范围表,然后使用unicode代码查表。使用之前的例子测试:
>>> get_width(ord(u'a'))
1
>>> get_width(ord(u'你'))
2
>>> get_width(ord(u'”'))
1
完全准确,而且在实际应用中的表现也比较好,是一个理想的解决方案,更多技巧请查阅urwid的old_str_util.py 源码。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02