京公网安备 11010802034615号
经营许可证编号:京B2-20210330
盘点困扰企业关于大数据的五个误解
在这有着轻微寒意的秋天,我们都知道万圣节马上就要到了,但有什么能比幽灵或者鬼屋更恐怖呢?对于很多IT经理来说,大数据就是一场噩梦。其实,只要部署了正确的工具和策略,大数据能够为企业带来很多机会,下面让我们来看看困扰着企业的5个大数据误解:
误解1:“我们是一家小公司,我们还不需要担心大数据问题。”
从新闻报道中我们了解到很多大型企业的大数据项目,但企业不应该他们的做法吓到了。各种规模的企业都可以并且应该像大型企业一样捕捉数据。毕竟,无论你是财富500强企业还是小公司,你都想要了解你的客户。
误解2:“我已经部署了大数据系统,所有数据问题都解决了。”
对于那些有这种想法的企业,要注意了,你不会希望看到最终酿成一场网络灾难。传统大数据系统并不能解决所有问题,它们需要确保提供给它们的数据是好数据,而不是烂数据。挖掘大数据的更准确和有见地的方法是利用网络,即所有数据流经的地方。随着越来越多的应用程序移动到云计算中,企业如果想要全面了解客户体验,他们必须部署一个这样的解决方案,即可以跨私有网络、混合网络和公共网络来捕捉用户体验。
误解3:“我们必须捕捉所有信息来进行大数据分析。”
这听起来好像是正确的做法,但其实根本不是这么回事。对于大数据分析,重点是捕捉正确的数据,并过滤掉你不需要的东西。当你在捕捉数据进行分析时,你需要注意盲点,因为这可能导致产生不全面的客户体验和行为分析结果。你需要这样的解决方案,它允许你捕捉所有信息,但只将正确的数据传输给分析解决方案来帮助你了解真正的客户体验。
误解4:“大数据系统的部署和维护费用高昂。”
就像万圣节的装饰,并不一定是昂贵的,现在也有解决方案能够为你提供全面的客户体验信息,同时不会让你超出预算。事实上,最有效的解决方案通过网络来捕捉数据,并允许过滤掉不完整的、相关的或者实时数据,为你提供符合成本效益和宝贵的大数据解决方案。
误解5:“大数据系统太复杂了。”
不要认为大数据系统很复杂。现在的解决方案提供非常强大的功能,能够为那些负责客户体验的人员提供有价值的、可访问的和可用的信息。通过向分析系统提供最高质量的数据,你能够更好地从数据中获得价值。此外,你可以远程对过滤进行更改,让你的分析师和营销专家更“自助地”进行分析。你不需要更改应用程序代码。只要你部署了合适的工具和正确的团队,大数据将为你带来前所未有的机会,不要被这五个误解吓到了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27