
大数据时代的市场研究方法
大数据时代新的市场研究方法使“无干扰”真实还原消费过程成为可能,智能化的信息处理技术使低成本、大样本的定量调研成为现实,这将推动消费行为及消费心理研究达到一个新的高度,帮助快速消费品企业更为精准地捕捉商机。
大数据时代的市场研究方法
1.基于互联网进行市场调研提高了效率,降低了成本。
网络调研具有传统调研方法无可比拟的便捷性和经济性。快速消费品企业在其门户网站建立市场调研板块,再将新产品邮寄给消费者,消费者试用后只要在网站上点击即可轻松完成问卷填写,其便利性大大降低了市场调研的人力和物力投入,也使得消费者更乐于参与市场调研。同时,网络调研的互动性使得企业在新产品尚处于概念阶段即可利用3D拟真技术进行产品测试,通过与消费者互动,让消费者直接参与产品研发,从而更好地满足市场需求。
2.挖掘网络社交平台信息成为研究消费态度及心理的新手段。
脸谱、QQ、微博、微信等社交平台已日渐成为新生代消费群体不可或缺的社交工具,快速消费品的消费者往往有着极高的从众性,因此针对社交平台的信息挖掘成为研究消费潮流趋势的新手段。例如,通过微博评论可以统计分析消费者对某种功能型产品的兴趣及偏好,这对研究消费态度及心理有非常大的帮助。更重要的是,这类信息属于消费者主动披露,与访谈形式的被动挖掘相比信息的真实性更高。
3.移动终端提供了实时、动态的消费者信息。
随着3G网络及智能手机普及,市场研究已渗透到移动终端领域。大量的手机APP应用(例如二维码扫描等)为实时采集消费信息提供了可能性,移动终端的信息分析在购买时点、产品渗透率及回购率、奖励促销效果评估等方面将发挥不可估量的作用。
智能化信息采集、储存及分析
1.超大容量的数据仓库。
数据仓库具有容量大、主题明确、高度集成、相对稳定、反映历史变化等特点,可以有效地支撑快速消费品企业进行大数据研究与应用。数据仓库可以更有效地挖掘数据资源,并可以按照日、周、月、季、年等周期提供分析报表,有助于营销人员更有效地制定营销战略。
2.专业、高效的搜索引擎。
旅游搜索、博客搜索、购物搜索、在线黄页搜索等专业搜索引擎已经得到了广泛应用,快速消费品企业可以根据自己的特点构建专业化的搜索引擎,对相关的企业信息、产品信息、消费者评价信息、商业服务信息等数据进行智能化检索、分类及搜集,形成高度专业化、综合性的商业搜索引擎。
3.基于云计算的数学分析模型。
市场研究的关键是洞察消费者需求,基于云计算的数学分析模型可以将碎片化信息还原为完整的消费过程信息链条,更好地帮助营销人员研究消费行为及消费心理。这些碎片化的信息包括消费者在不同时间、不同地点、不同网络应用上发布的消费价值观信息、购买信息、商品评论信息等。基于云计算的智能化分析,一方面可以帮助市场研究人员对消费行为及消费心理进行综合分析,另一方云计算成本低、效率高的特点非常适合快速消费品企业数据量庞大的特性。
大数据运用中的问题
传统的市场研究包括定性研究及定量研究,以座谈会为主的定性研究受制于主持人的访谈技巧,以街头拦截访问为主的定量研究虽然以严谨的抽样理论为基础,但同样不能完全代表总体的客观情况。而大数据时代革命性的调研方法为市场研究人员提供了以“隐形人”身份观察消费者的可能性,超大样本量的统计分析使得研究成果更接近市场的真实状态。
与此同时,大数据时代的新方法、新手段也带来新的问题,一是如何智能化检索及分析文本、图形、视频等非量化数据,二是如何防止过度采集信息,充分保护消费者隐私。虽然目前仍然有一定的技术障碍,但不可否认的是大数据市场研究有着无限广阔的应用前景。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10