京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据可否被神化
大数据的发展速度让人瞠目结舌,大数据应用的快速深入也引起业界广泛关注,如今,大数据总量的增长主要归功于非结构化数据的增长。
广义的非结构化数据也包括了半结构化和多结构化数据,目前普遍被认为占到总量的85%以上,而且增速比结构化数据快得多。低信息密度的非结构化数据是大数据的一大挑战,而挑战才是机会,业界巨擘们创造了很多新的概念来迎接非结构化数据,NoSQL数据库就是其中最亮丽的一个。
对此,数据库行业的老法师Mike Stonebraker对此耿耿于怀,不惜力推“血统”更纯正的NewSQL数据库;Sybase公司的CTO Irfan Khan甚至说大数据(这个新概念)根本就是个大谎言,声称他们的数据仓库工具早就能分析包括非结构化数据在内的大数据。
实际上,这类总量数据的预测,对于存储和网络企业的投资者来说,无疑能提升信心,但对其他人来说,没有太大意义。他们更关心的是个体行业、企业甚至个人数据的状况。
由此,毋庸置疑,必须要对大数据有清醒的认识。大数据是一种新的数据形态和实践,它不是取代当前主流的数据应用,而是与之并存。并且,在今后相当长的时间内,它仍然是个新鲜事物。即使年复合增长率高达32%,到2016年全球大数据技术和服务市场总额也就是240亿美金左右(IDC在2012年底的预测)。不切实际、一窝蜂地上大数据项目不应鼓励。明明不算大数据,却偏要乔装打扮,削足适履上马Hadoop和NoSQL更不足取。
大数据也是一种战略、世界观和习惯。即使今天没有大体量的数据,还是可以尽可能自觉、客观、全面地测量世界,为未来的大数据实践做准备。对于一个企业或系统来说,真正的挑战在数据采集而非存储。
微信在设计之初就把数据监控精细化,并纳入基础框架,这是意识和实力的体现。有多少公司像彭博社那样“如饥似渴”地采集数据?它能够雇佣一个卫星每周对位于俄克拉何马的美国最大原油储备库拍照,根据油罐浮动顶的阴影长度来判断原油储备量的变化。所以,成功者有成功的必然性。
其实“数据即价值”的价值观早已存在,Value不是大数据专享的属性,小数据照样有大价值。大数据的功劳在于唤醒大家的意识和觉悟。同样,从数据中发现价值的实践由来已久,横跨数据库、统计学和机器学习交叉学科的数据分析是大数据分析的基础,但传统的数据分析实践是无法适应大数据的发展的。
大数据虽然价值巨大,但是不能盲目神化大数据,有些人认为大数据是能够包治百病的灵丹妙药,也有些人认为大数据是包装旧观念而已,将大数据矮化,这两种观点都是不可取的,对部分人来说,大数据已经是个客观存在和竞争优势;对绝大多数人来说,大数据可以是一种“从现在做起”的世界观,是一种未雨绸缪、决战未来的战略,这样才是正确对待大数据的态度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27