
浅谈python for循环的巧妙运用(迭代、列表生成式)
我们可以通过for循环来迭代list、tuple、dict、set、字符串,dict比较特殊dict的存储不是连续的,所以迭代(遍历)出来的值的顺序也会发生变化。
迭代(遍历)
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
vlist=['a','b','c']
vtuple=('a','b','c')
vdict={'a': 1, 'b': 2, 'c': 3}
vset={'a','b','c'}
vstr='abc'
for x in vlist:
print('list:',x)
for x in vtuple:
print('tuple:',x)
for x in vdict:
print('dict:',x)
for x in vset:
print('set:',x)
for x in vstr:
print('str:',x)
list: a
list: b
list: c
tuple: a
tuple: b
tuple: c
dict: c
dict: a
dict: b
set: a
set: b
set: c
str: a
str: b
str: c
判断一个对象是可迭代对象可以通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance('abc', Iterable)
True
>>> isinstance([1,2,3], Iterable)
True
>>> isinstance(123, Iterable)
多值for操作
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
print(x,y)
1 1
2 4
3 9
生成下标
>>> for x, y in enumerate(['a', 'b', 'c']):
print(x, y)
0 a
1 b
2 c
生成列表
1.列出1到10的平方列表
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
L=[]
for x in range(1,11):
L.append(x*x)
print(L)[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
python提供了更简便的方法处理这个需求
>>> [x*x for x in range(1,11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
2.添加判断条件
只取列表中的偶数
>>> [x*x for x in range(1,11) if x%2==0]
[4, 16, 36, 64, 100]
3.多个for同时判断
>>> [m+n for m in 'ABC' for n in'abc']
['Aa', 'Ab', 'Ac', 'Ba', 'Bb', 'Bc', 'Ca', 'Cb', 'Cc']
4.获取dict中的value
一般for操作只能获取dict中的key而无法获取到value,可以利用items获取到values
>>> d={'a': 'A', 'b': 'B', 'c': 'C'}
>>> [k + '=' + v for k,v in d.items()]
['c=C', 'a=A', 'b=B']
注意:由于dict是单个key-value所以在for之前不能直接使用k,v for k,v这样代表k,v是多个key而不是指key-value,所以只能进行计算,但是如果计算的话又必须保证key和value是相同的数据类型否则无法进行+操作
针对key和value是不同的数据类型可以使用普通的for循环,使用print输出
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
d={'a': 1, 'b': 2,'c': 3}
for k,v in d.items():
print(k,'=',v)
5.list中所有的字符串变成小写
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
总结
python语法太巧妙了,主要归结于它强大的库,让使用python可以少些很多底层的代码。
以上这篇浅谈python for循环的巧妙运用(迭代、列表生成式)就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26