京公网安备 11010802034615号
经营许可证编号:京B2-20210330
序列:序列是一种数据结构,它包含的元素都进行了编号(从0开始)。典型的序列包括列表、字符串和元组。其中,列表是可变的(可以进行修改),而元组和字符串是不可变的(一旦创建了就是固定的)。序列中包含6种内建的序列,包括列表、元组、字符串、Unicode字符串、buffer对象、xrange对象。
列表的声明:
mylist = []
2.列表的操作:
(1) 序列的分片:
用法:mylist[startIndex:endIndex:step]
exam:
mylist[2:10] 检索第2个字符到第10个字符,默认步长为1.
mylist[2:10:2] 检索第2个字符到第10个字符,指定步长为2.
mylist[-2:-1:2] 正数索引是相对于首部的坐标,负数是相对于尾部的坐标。其实坐标一定要小于终止坐标,否则返回空的分片。
mylist[-12:-2:-2] 步长也可以是负数,表示从右向左提取元素。
(2) 序列的索引:
用法:mylist[index]
exam:
mylist[2] mylist[-2]
ps:正数是相对于首部的坐标,负数是相对于尾部的坐标。
(3) 序列相加:
用法: mylist1 + mylist2 <==> [1,2] + [3,4]
(4) 序列乘法:
用法: mylist * 5 mylist元素重复5次。
(5) in操作符:
用法: ‘item' in mylist 判断mylist是否包含某一成员。
3.列表涉及的内建函数: 内建函数len、min、max针对列表操作非常有用。
(1) len函数返回序列中所包含元素的数量。
(2) min函数和max函数分别返回学列中最大和最小元素。
(3) list函数可以把字符串转换成列表。
exam: list('hello') => ['H','e','l','l','o']
(4) cmp函数用来比较2个元素的大小
exam: cmp(x,y) => 返回0表示相等, -1 则是 x < y 1 则是 x > y
(5) reversed函数对序列进行反向迭代。
(6) sorted 返回已排序的包含seq所有元素的列表。
4.列表的方法:
(1)append: append方法在列表末尾追加新的对象。
exam:lst=[1,2,3] lst.append(4) => [1,2,3,4]
(2)count: count方法统计某个元素在列表中出现的次数。
exam: x=[[1,2],1,1,[2,1,[1,2]]] x.count(1) => 1
(3)extend: extend方法可以在列表的末尾一次性追加另外一个序列的多个值。即:可以用新列表扩展原有列表。
exam: a=[1,2,3] b=[4,5,6] a.extend(b) => [1,2,3,4,5,6]
(4)index: index方法用于从列表中找出某个值第一个匹配项的索引位置。
exam:lst=['we','le','at'] lst.index('le') => 1
(5)insert:insert方法用于将对象插入到列表中:
exam:lst=[1,2,3,4,5,6] lst.insert(3,8) => [1,2,3,8,4,5,6]
(6)pop: pop方法移除列表中的一个元素(默认是最后一个),并且返回该元素。
(7)remove: remove方法移除列表中某个值的第一个匹配项:
exam: x=['to','be','or'] x.remove('to') => 你懂得。
(8)reverse 方法将列表中的元素反序。
(9)sort 方法用于在原位置对列表进行排序。
exam: sort方法有默认的排序方法,另外还具有高级排序的用法,sort方法有两个可选的参数,key 和 reverse,key指定排序的关键字参数,指定后排序会按key的大小来排序,reverse用于指定是否反序。
x.sort(key=len) => 表示按照字符串的长度排序。
x.sort(reverse=True) => 表示反序排序。
x.sort(cmp) => 指定排序函数,你懂的。
5.元组:元组和列表一样,也是一种序列。唯一的不同是元组不能修改。
(1) 声明方式:
用逗号分隔一些值,就自动创建了元组。 exam: 1,2,3 => (1,2,3)
也可以通过园括号声明。 exam: (1,2,3) => (1,2,3)
(2) 元组的乘法:
3*(40+2) => (42,42,42)
6.元组涉及的内建函数:
(1)tuple函数的功能和list函数的基本上是一样的:以一个序列作为参数并把它转换为元组。
exam: tuple([1,2,3]) => tuple(1,2,3)
7.元组的分片:
exam: x=1,2,3 x[1] => 2 x[0:2] => (1,2)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27