京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据巫师般神力 令人悲喜交加
随着大数据应用的深入,大数据的影响力,已经深入到各个领域,而就在近两年,大数据应用突然爆炸,五彩缤纷的创意都变成现实。即使最谨慎的观察家也承认,大数据的商业应用时代已经来临,正因为它前所未有的能力——准确预测。
《大数据时代》一书中强调,大数据不关心“因果”,只在乎“相关”。这一点也被此书的拥趸们反复强调。因为大数据分析,人们理解世界,不再需要探讨“内在机理”。大数据不是教机器像人一样思考,而是简单的数学算法用在海量数据上,让数据自己说话。
在最难确定因果关系的人体科学领域,大数据分析同样屡有斩获。中英人寿保险公司用几百种生活方式的数据,比如爱好、常浏览的网站、常看的节目以及收入等,找出更可能患高血压、糖尿病和抑郁症的人。
丹麦癌症协会2011年发表文章,利用1985年以来的全部手机用户数据,与同期所有癌症患者数据结合来看,发现癌症跟使用手机并没有关系。
还有美国研究者通过16个不同数据,发现早产儿稳定的生命体征不是病情好转的标志,而是暴风雨前的宁静。研究者并不知道具体原因,只知道数据显示出是如此。
有了大数据,分析不必知其所以然。着名的谷歌翻译小组,竟然不需要语言学家。他们完全是让计算机根据网上的数据,去判断一段英文可能对应于哪一段中文。一开始这种翻译质量不会太好,随着信息量的增加,机器会翻译得越来越让人满意。
有了大数据,分析也不需要太精确,因为批量处理允许瑕疵存在。英国石油公司在美国的一个炼油厂里,安装了很多无线感应器,因为高温和电器干扰,不少感应器读数是错的,但数据一多,这些错误就可以弥补。通过随时监测管道承压,厂方发现某些原油更具腐蚀性,就可以发现和防止。
UPS快递公司在所有卡车上安装传感器,如果发现数据异常,他们就提前更换零件,这样节省了好几百万美元修理费用。他们并不在乎传感器数据是否准确。但这样做的确有效。
俗话说:“量变引起质变”,对于大数据来说,这个道理同样适用,数据量极多时,数据分析就呈现出我们所不熟悉的属性——因果关系淡出;单个数据准确不再重要;而预测几乎必然准确。大数据如同巫师一样的神力,既让我们陌生,又让我们激动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29