京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下企业的必经之路
大数据浪潮席卷全球,大数据时代崛起
近几年来,随着互联网、云计算、物联网等信息技术的迅猛发展,一种新的技术革命浪潮正以一种势不可挡的姿态席卷全球,并悄然改变着公共决策、企业管理、市场营销以及生活的方方面面,成为一种全新的颠覆性技术变革,这便是当前最为炙手可热的话题——大数据。
所谓的“大数据”有两个方面的内涵——海量和非结构化,其特性被归纳为4个V,即Volume,Variety,Value,Velocity,分别对应:数据体量巨大;数据类型繁多;数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。
大数据时代给企业带来挑战,数据驱动业务是关键
当数以亿计的数据可以在虚拟的空间中自由穿梭时,当各种数据的获取变得瞬间即达时,大数据对政府、对企业、乃至对个人,都产生了深远的影响。对于大多数企业来说,大数据是既是机遇也是挑战。一方面,“得数据者得天下”,通过对大量的数据进行科学的分类整理以及分析,能够为企业的外部营销、内部运营和领导层决策等提供强大的数据支撑,不断提升企业运营效率,提升企业管理水平。可以说,利用互联网与物联网等带来的海量数据,通过挖掘、分析与业务应用,企业可以在激烈的市场竞争中赢得优势。
另外一个方面,海量的数据也给企业进行数据挖掘、分析带来巨大的挑战。如何从纷繁复杂的数据中挖掘出有利于企业发展的信息,并利用好这些信息指导企业运营,对于一个企业来说显得至关重要。“用数据说话”,如何让数据产生真正的价值成为了摆在企业管理者面前不得不跨越的鸿沟。
选用一体化及端到端业务系统,应对数据分析难的问题
“大数据”话题的日趋白热化以及对企业管理带来的深远影响,让许多企业管理者更加关注数据带来的业务价值,纷纷想要通过数据分析工具来挖掘数据价值,从而更好地指导企业的发展。然而,在数据挖掘、分析的过程中,一些弊端渐渐流露出来,海量的数据分析起来要耗费非常大的精力,还常常出现错误,得不到想要的分析结果。
“企业由于纷纷想分折其数据,
会发现其数据问题源头在于业务系统分散导致数据分散,不一致及不能关联以及非端到端导致人工输入错误或个人的原因不输入数据。”对此,拥有30年国内外IT项目管理经验的高亚科技有限公司CEO、前花旗银行副总裁罗叶明先生分析道,“当越来越多的企业意识到上述问题时,他们会更加倾向于选择一体化及端到端的业务系统。”
先进BI技术+一体化,数据分析又快又准
嵌入先进BI技术,数据挖掘一步到位。面对瞬息万变的市场环境,企业必须对海量的数据进行快速的分析,以最快的速度为企业管理者提供有价值的信息,这对数据分析速度有严格的要求。商业智能技术为企业提供快捷数据仓库,与传统数据仓库包含数据库系统开发、数据清理、数据集成及数据挖掘的整个过程不同,该数据仓库简化数据挖掘的步骤,数据挖掘一步到位,不仅最小化数据集成的需要,还提供行业特定的预先集成解决方案,提高数据分析效率,帮助企业更好地应对大数据“大”的挑战。
数据源统一关联,数据分析精准且实用。事实上,对于大数据分析来说,最大的优势便是数据源,从产生开始便是统一关联的。基于“一个设计,一个系统”的理念,在设计之初便是将ERP、
CRM、PM、PMO等功能模块建立在一个统一的平台上,采用统一的数据库来保持数据结构的全面关联与实时同步,克服了传统应用软件在数据实时性、一致性上的不足。这样一来,企业在开展数据分析时获得的数据源便是实时精准的,避免脏数据的出现,提升数据分析的准确性。
大数据时代带来的海量数据需要先进的信息化手段进行分析,这让企业的IT管理面临更加严峻的局势。基于一体化及端到端管理,借助先进的商业智能技术,提升数据分析的准确率及速度,让大数据分析变得又快又准,且易用,帮助企业更好地实现商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12