京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业智能和商业应用系统的持续融合
在过去的20年间,商业应用系统和商业智能(BI)发展为相对分开的和独特的市场。原因有很多。首先,商业应用系统一直未能交付如它们所承诺的那种优质管理信息,所以用户不得不转向其他系统和供应商。第二,IT企业将商业项目划分成碎片的最佳实践导致在技术上职责之间的逻辑分离。因此,商业应用系统的结果,在很大程度上,成为一种业务处理的系统,只有一小部分利用一些嵌入的分析做为决策的支持。商业智能(BI)基本上成为一种无限制的分析工具箱,相对独立于商业流程。这使得用户在已经发生的事情上建立报表,但在某种程度上那是商业流程的一种分离。
这导致了两个结果:商业智能(BI)在企业经理人员当中的使用渗透率不高,而商业应用系统的分析能力却带给这些人越来越多的挫折。高管们不得不依靠数据提取和电子表格的混合来获取大量信息,他们原以为IT说过可以从商业智能(BI)和商业应用系统中获取这些信息。随着分析系统日渐增长的采用,这一状况正在改变,尤其是绩效管理的应用软件,消除了这些鸿沟,并为商业用户的需要提供了正确的解决方案。然而,许多IT企业还未意识到这一点,并且继续延续着商业智能(BI)与商业应用系统之间的分离。
什么是绩效管理,IT是如何互补商业智能(BI)和商业应用系统的?
绩效管理的成功不仅仅是提供技术和应用。成功的绩效管理体现在它的使用、接纳、适用性以及传递于企业的各个层面。绩效管理的主要目标之一是将经营活动与商业策略连接起来。指标是关键,因为,如果指标是精心挑选的,他们就能对战略目标的成功与否做出合理的权衡。
应用系统,工具和基础设施是专门用于支持绩效管理的技术。尽管有可能会尝试在没有技术支持之下实施绩效管理 (通过专注于绩效管理的方法),但要真正成功地实施绩效管理,它必须有一组分析软件的支持,而这些分析软件的组合就构成了部分的商业智能(BI)和绩效管理策略。大多数的大中型企业是如此的复杂,试着用手动处理的平衡计分卡和电子表格等这样的方法来管理他们,总是不能有效地将绩效管理的理念与直接提升商业流程和嵌入在员工的日常活动中的策略连接起来。
最后,绩效管理项目必须观察企业之外的合作伙伴、供应商、客户、采购供应商,甚至是市场竞争者。
商业智能(BI)与商业应用系统是如何融合的?
分析应用软件套装商业智能(BI)的性能专为某一特定领域或商业问题。分析应用软件包含预定义的数据和过程中的工作流,和一套预制模型、分析和交付的性能。分析应用软件可以作为一种可配置的解决方案从不同的供应商那里购买,也可以由内部的团队建立(或由咨询公司第三方建立)。绩效管理应用系统是特种的分析应用系统,应该在管理和治理方式上与其他重要的商业流程套餐和事务处理系统(例如,企业资源规划(
ERP)或客户关系管理(CRM))相似。这些应用系统有工作流管理的性能可以对管理流进行管理。
所有这些分析应用系统在许多层面为商业用户增添了价值。他们消除了商业智能(BI)与商业应用系统两个系统之间的隔阂,因为他们为商业智能(BI)补充了商业的内容,而在商业应用系统中提供了必需的分析能力。绩效管理应用系统具有高度的分析属性,但会以套件的形式出售,并且支持商业流程。所以,从管理和治理的角度来看,他们喜欢“传统”的商业应用系统更甚于商业智能(BI)。这意味着企业现在必须将两个“世界”放在一起考虑,而不是把他们当作商业的两个方面来分别对待。
商业应用系统供应商正在更多地关注“嵌入式分析”,这种分析性能作为他们整体商业应用软件解决方案的一部分提供给用户。但是,在商业应用软件的嵌入上也有不同的程度, 而且高德纳公司已发现三种风格鲜明的嵌入:
在查询点上的嵌入(附带的流程):这是一种通用的分析并不只针对任何特定商业流程。他们需要用户初始化一个分析活动和决定需要采取什么行动。嵌入很简单,例如,当它通过门户网站呈现。比如说:
一个销售人员在一个单一的查询角度里,从一个客户关系管理(CRM)系统上观察客户的主数据和从一个财务系统上观察支付历史记录。
在决策点上的嵌入(流程中的人为干预):
这些分析是针对于一种商业流程而且内容是源自于流程中一个特定的决策点。仍然需要人为的干预来阐明合理的行动。比如说:用户正在处理一个销售订单,分析提供了事务处理过程之内的内容并显示客户的付款历史和其他数据,然后用户可以决定是暂停订单还是履行订单。
在流程中的嵌入(自动化处理):这些是针对 流程中具体的决策点。分析是嵌入在流程执行应用软件中,而且系统会自动推荐下一个最佳的行动。理想的情况下,系统会基于企业的目标自动优化决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12