
商业智能和商业应用系统的持续融合
在过去的20年间,商业应用系统和商业智能(BI)发展为相对分开的和独特的市场。原因有很多。首先,商业应用系统一直未能交付如它们所承诺的那种优质管理信息,所以用户不得不转向其他系统和供应商。第二,IT企业将商业项目划分成碎片的最佳实践导致在技术上职责之间的逻辑分离。因此,商业应用系统的结果,在很大程度上,成为一种业务处理的系统,只有一小部分利用一些嵌入的分析做为决策的支持。商业智能(BI)基本上成为一种无限制的分析工具箱,相对独立于商业流程。这使得用户在已经发生的事情上建立报表,但在某种程度上那是商业流程的一种分离。
这导致了两个结果:商业智能(BI)在企业经理人员当中的使用渗透率不高,而商业应用系统的分析能力却带给这些人越来越多的挫折。高管们不得不依靠数据提取和电子表格的混合来获取大量信息,他们原以为IT说过可以从商业智能(BI)和商业应用系统中获取这些信息。随着分析系统日渐增长的采用,这一状况正在改变,尤其是绩效管理的应用软件,消除了这些鸿沟,并为商业用户的需要提供了正确的解决方案。然而,许多IT企业还未意识到这一点,并且继续延续着商业智能(BI)与商业应用系统之间的分离。
什么是绩效管理,IT是如何互补商业智能(BI)和商业应用系统的?
绩效管理的成功不仅仅是提供技术和应用。成功的绩效管理体现在它的使用、接纳、适用性以及传递于企业的各个层面。绩效管理的主要目标之一是将经营活动与商业策略连接起来。指标是关键,因为,如果指标是精心挑选的,他们就能对战略目标的成功与否做出合理的权衡。
应用系统,工具和基础设施是专门用于支持绩效管理的技术。尽管有可能会尝试在没有技术支持之下实施绩效管理 (通过专注于绩效管理的方法),但要真正成功地实施绩效管理,它必须有一组分析软件的支持,而这些分析软件的组合就构成了部分的商业智能(BI)和绩效管理策略。大多数的大中型企业是如此的复杂,试着用手动处理的平衡计分卡和电子表格等这样的方法来管理他们,总是不能有效地将绩效管理的理念与直接提升商业流程和嵌入在员工的日常活动中的策略连接起来。
最后,绩效管理项目必须观察企业之外的合作伙伴、供应商、客户、采购供应商,甚至是市场竞争者。
商业智能(BI)与商业应用系统是如何融合的?
分析应用软件套装商业智能(BI)的性能专为某一特定领域或商业问题。分析应用软件包含预定义的数据和过程中的工作流,和一套预制模型、分析和交付的性能。分析应用软件可以作为一种可配置的解决方案从不同的供应商那里购买,也可以由内部的团队建立(或由咨询公司第三方建立)。绩效管理应用系统是特种的分析应用系统,应该在管理和治理方式上与其他重要的商业流程套餐和事务处理系统(例如,企业资源规划(
ERP)或客户关系管理(CRM))相似。这些应用系统有工作流管理的性能可以对管理流进行管理。
所有这些分析应用系统在许多层面为商业用户增添了价值。他们消除了商业智能(BI)与商业应用系统两个系统之间的隔阂,因为他们为商业智能(BI)补充了商业的内容,而在商业应用系统中提供了必需的分析能力。绩效管理应用系统具有高度的分析属性,但会以套件的形式出售,并且支持商业流程。所以,从管理和治理的角度来看,他们喜欢“传统”的商业应用系统更甚于商业智能(BI)。这意味着企业现在必须将两个“世界”放在一起考虑,而不是把他们当作商业的两个方面来分别对待。
商业应用系统供应商正在更多地关注“嵌入式分析”,这种分析性能作为他们整体商业应用软件解决方案的一部分提供给用户。但是,在商业应用软件的嵌入上也有不同的程度, 而且高德纳公司已发现三种风格鲜明的嵌入:
在查询点上的嵌入(附带的流程):这是一种通用的分析并不只针对任何特定商业流程。他们需要用户初始化一个分析活动和决定需要采取什么行动。嵌入很简单,例如,当它通过门户网站呈现。比如说:
一个销售人员在一个单一的查询角度里,从一个客户关系管理(CRM)系统上观察客户的主数据和从一个财务系统上观察支付历史记录。
在决策点上的嵌入(流程中的人为干预):
这些分析是针对于一种商业流程而且内容是源自于流程中一个特定的决策点。仍然需要人为的干预来阐明合理的行动。比如说:用户正在处理一个销售订单,分析提供了事务处理过程之内的内容并显示客户的付款历史和其他数据,然后用户可以决定是暂停订单还是履行订单。
在流程中的嵌入(自动化处理):这些是针对 流程中具体的决策点。分析是嵌入在流程执行应用软件中,而且系统会自动推荐下一个最佳的行动。理想的情况下,系统会基于企业的目标自动优化决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11