京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据仓库维度模型粒度提升情况浅析
维度建模时,力求在数据仓库中记录最明细粒度的数据,以保证完整记录业务发生的事实,从而满足日后面临不同分析需求时能够对数据进一步加工利用。可在商业智能项目中往往还需要更高粒度的数据,这时就会面临维度模型粒度提升的情况。满足业务需求的前提下为提高效率而采取的提升粒度做法不在讨论之列。
1、关注的层次提升,提高维度级别
传统BI应用中,决策分析层的数据粒度往往比业务操作层的大,比如DW中财务模型一般会记录到分录的级别(凭证之下),可是分析时往往关注核算项目、科目、甚至指标和比率的层级,而且在时间上一般是月度级别。
2、关注的角度缩窄,降维
DW中明细粒度的数据需要记录一个业务事实发生的方方面面,比如DW库存模型对退货操作要记录退货单号、货品、仓库仓位、仓管员、退货开始时间、退货结束时间、退货店铺、客户、退货数量等事实,销售部的商品退货分析模型中需要略去单号、仓位、仓管员、开始及结束时间细节等(仓管部门在退货效率分析时却需要这些数据)。再比如财务模型的会计及出纳人员信息,在财务分析模型中一般也会忽略。
3、关注的对象合并,提取公共指标
不同业务单元的业务数据因为可记录的事实不同,往往在DW明细粒度级别无法归并在一个模型中,比如即使是集中管理型的集团企业内,不同下属公司的财务和业务由于地域或板块等原因,不能够在财务核算和业务明细级别进行分部分析,只能提取一些绩效指标具有代表性的绩效指标(公共指标),在分部之间进行横向比较。企业具有不同销售渠道(如同时经营实体店和网店)时,也面临这种情况。
4、关注的流程合并,提取公共维
DW数据模型在明细级别是按照业务单元分割的,可在一些分析中,尤其是绩效分析中,是跨业务环节的。比如服饰行业(尤其是快时尚品牌)里的买手分析模型,需要对买手负责的货品进行全生命周期的跟踪分析,从买货或设计,到入库、销售、出库、退货等等,直到下架,都要跟踪,在货品生命周期分析模型里就只能保留公共维度,忽略各环节的个性维度。
5、附加指标的约束,提升维度级别或降维
不同来源的数据往往具有不同的粒度,在DW数据模型中分开存储,在分析模型集成。比如预算数据远比业务发生数据的维度少,而且很多预算指标与原始的业务度量不对应,而与计算指标对应。再比如市场分析模型中常用的竞争对手数据、市场占有率数据,远比企业本身销售分析模型的维度少(比如需要忽略掉企业自身渠道、部门、人员等维度)、粒度大(比如在地区、时间、商品等维度上仅达到城市、月度、品牌等级别)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27