
认清大数据,充分发挥应用价值
大数据正成为继云计算、物联网、移动互联网之后又一个被热议、热捧的概念。在将大数据作为信息技术未来发展方向和经济社会诸行业领域应用方向予以关注的同时,也必须对大数据有全面、清醒的认识,才能充分发挥大数据的应用价值。
一是要全面认识大数据的内涵,避免陷入单纯的计算能力和存储能力建设
虽然“大数据”本指“规模很大的数据(集合)”,但总体上应是数据、技术与应用三者的统一。从对象角度看,大数据是大小超出典型数据库软件采集、储存、管理和分析等能力的数据集合,这是大数据分析的对象,不以之为基础,大数据分析与利用就无从谈起。同时,大数据并非大量数据简单、无意义的存储与堆积,数据间是否具有关联性,是“大数据”与“大规模数据”的重要差别,也是大数据能够得以应用的基础。从技术角度看,大数据技术是从各种各样类型的大数据中,快速获得有价值信息的技术及其集成,这种对数据对象的动态处理行为是“大数据”与“大规模数据”、“海量数据”等类似概念间的最大区别。这其中,大数据技术是使大数据中所蕴含的价值得以发掘和展现的重要工具。从应用角度看,大数据是对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。大数据所以成为热点,就在于各个行业领域具有了对大数据分析和利用的巨大现实需求和具体应用需求。如果不与具体应用相联系,大数据的作用和价值就无从谈起。同时,不同领域、不同企业、不同业务的数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据分析处理系统也可能存在相当大不同。正由于与具体应用紧密联系,甚至是一对一的联系,才使“应用”成为大数据不可或缺的内涵之一。可见,只有全面认识并坚持“数据、技术、应用”三位一体共同发展,所发展的才是真正的大数据。若只是加强基础设施建设,只是将很多数据存储起来,可能连大数据的皮毛都难以摸到。
二是要清醒认识大数据发展的成熟度,避免过度建设下的目标落空
在多方的擂鼓助威下,投身大数据研发与应用已成为新的热潮,其广泛应用和巨大收益似乎触手可及。但大数据毕竟是由商业机构率先提出并加以推进的概念,为了在软硬件产品和信息服务方面获得更多收益,跨国信息技术企业在推广大数据概念的过程中也难免包含炒作的成分。若不加分辨,盲目跟随,很可能会起大早、赶晚集,甚至赶错集。
全球大数据的发展还处于起始阶段,理论展望尚多于实践探索。特别要注意到的是,与藉成熟技术积累推动应用模式创新的云计算、物联网、移动互联网等领域不同,大数据领域的技术尚未完全成熟,在多源异构信息融合、大规模数据智能清洗、大规模异构数据并行挖掘、大规模异构数据在线分析处理、大规模数据可视化等技术领域还需要做大量研究创新工作,尤其是决定大数据应用能力高低的人工智能技术尚未取得革命性突破,将在一定时间内限制大数据的深度应用。这种背景下,对大数据的发展必须从基础做起,注重核心关键技术创新与应用模式创新的协同并进;对大数据的应用必须考虑技术实现能力,避免目标过于理想,难以落地。
三是要客观分析用户自身的应用基础和应用目标,避免多做无用功
大数据应用可以分为多个层次,例如,对大规模数据的初步加工整理、运用已有知识规则对大数据信息的分析发掘,运用人工智能工具自动发现新的知识规则并挖掘新的关联信息等。从广义上看,这些都可以归属于大数据层次;从实际看,不同的企业、相同企业在不同应用阶段,在大数据应用方面也确实有着不同的应用要求。因此,在运用大数据时,必须与用户自身实际情况相结合。同时,在系统顶层设计时,采用开放可扩展的体系结构,以便在未来功能需求增多增强时实现快速、灵活的升级。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10