
python中常用的各种数据库操作模块和连接实例
这篇文章主要介绍了python中常用的各种数据库操作模块和连接实例,包括sqlite3、oracle、mysql、excel,需要的朋友可以参考下
工作中,经常会有用python访问各种数据库的需求,比如从oracle读点配置文件或者往mysql写点结果信息之类的。
这里列一下可能用到的各个模块。
sqlite3: 内置模块
用sqlite,有时候确实很方便,我觉得它确实做到了宣称的“零配置”。python自2.5版以来,就内置了对sqlite3的支持,使用也非常简单,按照文档上来:
另外,关于sqlite在C和bash下的用法,可以参考为以前的文章。
oracle: cx_Oracle
其实,前面先介绍sqlite3,除了它确实是个小数据库以外,还有一个原因:其他数据库在python下的操作,其实基本上和sqlite3的操作是一样的,也就是说,python其实已经几乎统一了数据库的接口。
打开cx_Oracle的文档页面,你会发现其风格也和python文档很像,因为他们都是用 Sphinx 做的。模块的使用方法就更像了,把上面的代码里,获得连接的那行,换成这样:
就可以了。只要把用户名、密码、TNS组成一个字符串,传进去,就可以得到一个oracle的连接了。
mysql: MySQLdb
和前两个非常类似,连接的时候用以下两个语法之一:
接下来,也把它当成sqlite用就好了。
excel: pyExcelerator
好吧,我承认excel不算数据库,只是写在这里充数而已,哈哈。因为偶尔还是要取下别人发来的excel里的数据的。
其实,用pyExcelerator来读取文件也是很简单的:
这样出来以后,sheets就是整个工作薄了,它是工作表组成的list,而一个工作表对应于一个tuple,格式是:
('工作表名', 内容),而内容又是一个dict,key是一个(行数,
列数)的tuple,value才是正在的对应格子的内容。看起来确实比较绕,好在处理excel的应用也不多,将就吧。
另外,其实pyExcelerator还支持写入数据到excel的,如果有把查询结果保存成excel的需求的话,可以试试看,我还是尽量不用这种格式了,哈哈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10