京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业大数据之梦 如何成为现实
提起大数据,相信很多人脑子里第一时间会想到一座闪着金光的金山,的确,大数据就如同一座金矿一般,蕴含着巨大价值,相信每一位关注IT技术创新的人都会听过这句话。
没错,从海量数据中筛选出有用的信息,然后通过各种手段将信息转化为洞察力,从而做出正确决策,推动业务发展。在这样一个信息链条中,企业需要确保每一个环节都不出错,才能将数据转化为价值。然而又有多少企业真正能做到这一点呢?少之又少!大数据很火,但是何时才能让大数据真正为企业带来盈利?
大数据将成为“下一代企业竞争力,生产力以及创新的前沿”。但现状是,许多企业和管理者开始盲目收集数据并进行分析,期待能够得到快速的回报。很遗憾,他们未能如愿。大多数企业距离从数据中提取利润都差着十万八千里,这可不仅仅是缺少合适的技术。想让大数据真正对企业盈利造成影响,就需要解决三大根深蒂固的挑战。
第一,“拍脑袋”做决策的方式还很普遍。在商业世界里,“最高权利者”的意见对决策会造成极大影响,这种现象非常普遍。这是许多企业的通病,大数据可以对此进行纠正。然而真正做到需要企业观念的转变,领导在做出决策时要摆脱“拍脑袋”的坏习惯,让真实的数据说话。只是收集更多数据,对于推翻这种心态一样于事无补,甚至会让观念的转变过程变得更加艰难。
第二个挑战就是人才技能的不足。就目前来说,能玩转大数据的人才远远无法满足企业的需求量。硅谷之父万尼瓦尔·布什(Vannevar
Bush)在70年前就说过这样一句经典的话:“未来将会有信息的开荒者,这些人会在大量普通记录中寻找线索,并自食其乐。”然而,根据麦肯锡机构的报告,目前在美国只有19万接受过严格训练的数据分析师,这一数量远远无法满足大数据时代的需求。
企业管理者不必非要招聘一群数据科学家级别的精英来直接向其汇报,他们需要在各个层面鼓励机构培养分析师,传授核心技能、最佳实践,在此过程中要尽量做到精确。这样能够增加透明度,鼓励对数据的需求并帮助传播必不可少的技能。
知道如何处理数据则是第三个挑战。即便在解决上述两个问题之后,也要弄清什么样的业务能够通过大数据获得收益。如果不能指导行动,那么收集再多的数据也是毫无意义的。事实上,获得洞察力是一方面,可实践性也是分析的标志之一。那么企业能否从大量历史数据的“噪音”中获得可实践的预测以及具有前瞻性的决策?
举例来说,一家手机制造商也许能够收集大量的消费者数据,除非这些数据能够应用到实践当中,从而改善客户体验,否则它只具有理论上的价值。再比如,一家连锁零售企业通过精准的邮件营销获得客户的信息,但如果销售部门没有合理利用这些信息,那么销售机会就会稍纵即逝。大数据想要获得大成功,数据的文化就必须传播给企业的每一位员工。
评论:
在大数据时代下,如何将企业的大数据之梦变成现实,是很多企业都面临的问题,对于企业而言,要做的,是理解数据的重要性,然后在规划的每一个阶段以及企业的每一个层级中充分利用数据。掌握小数据部署利用好大数据的充分条件,而是必要条件。企业关注的重点应该是,让更多的员工,更有规律地,更好地利用那些可管理的数据。然后让业务逐渐能够基于数据来采取行动,只有这样才能让大数据之梦成为现实。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29