
大数据、云存储的时代已经来临
在文章中,笔者简单阐述了两种监控摄像目前的市场状况,也谈到了高清监控设备产生的海量数据,对存储设备的冲击。在流量较少的区域,采用支持移动侦测的监控摄像机,确实能为后端存储设备减轻压力,但对于要求7*24小时工作的监控摄像机来说,压力似乎还是存在的,如何缓解并有效的管理这些数据,成了目前安防企业需要考虑的问题。
口号OR行动
云计算、大数据、云存储等概念相继提出,立刻成为时下的热点话题,几乎各行各业都对它未来的发展,提出了美好的设想。
确实如此,大数据、云存储的深入发展,确实给高清监控设备产生的大量数据带来了福音,不仅有效的存储及管理数据,而且这些海量数据不再是孤立的,所有安防数据可以实现资源共享,为后期大量的分析提供数据支撑。
对于安防企业的影响
对于安防企业,首先在营销模式上会发生变化,企业不再单一的为用户提供设备,可以由服务着手。安防厂商可以为用户设计方案并提供设备,用户只需按期向安防企业缴纳服务费,相当于把企业的安防部分托管给安防厂商,企业本身也不必再为这些复杂而专业的问题苦恼。对于安防企业,用户增加了对自己的依赖,为后期的二次营销带来可能。
对于托管服务,早已不是什么新鲜事,众多企业都将人力、IT服务外包给专业公司,由他们帮忙打理这些琐碎的杂事,而企业自身只会专注属于自已的领域。
对各行业的影响
对于道路交通。
智能交通概念的提出,不仅仅是道路的监控,其涉及的是人、车、路三者的关系,如何有效的管理他们的关系,成为城市发展的重要因素。
众所周知,城市化道路压力日益严重,道路拥堵不堪,智能化交通势在必行。但海量的交通数据对于监管部门来说,压力不是一般的大,大数据、云存储的应用,对于智能交通的数据共享提供了可能,通过智能分析功能,监管部门可以清楚哪条道路在什么时间段内拥堵最为严重,哪段道路多出现交通事故,对于针对性的监管提供了数据支持,可以在事故多发路段假设警示牌等。
对于医疗行业。
智慧医疗概念的提出,立刻引起轩然大波,最近网上有关医疗安防的信息非常多,如何有效的处理医患之间的关系,也是智慧医疗重点的研究问题。
针对挂号难这一问题,各大医院已经纷纷出台网上挂号平台,大大减轻了挂号窗口的压力,在挂号大厅,医院也设立的多台挂号机,也缓解大量就医人员的挂号问题。
挂号平台、挂号机的应用,是向智慧医疗平台的过度阶段,相信不久的将来,医疗行业会融入更多高新技术,使医疗服务更智能化。大数据的应用,对于医疗行业也有很大的帮助,能有效的分析目前医疗技术的走势、哪种疾病在什么季节多发等等。
对于学校。
学校的安全问题,一直以来是监管部门管理的重点,学校暴力事件时有发生,青少年叛逆思想严重,如何有效的管理校园安全,也是当下亟待解决的问题。
除了保护学生安全,对于校内盗窃案件的发生也有很大帮助。大数据、云计算的深入应用,帮助学校分析校园安全,青少年暴力事件发生频率及阶段,都有极大的借鉴意义。
对于公安系统。
社会的安全稳定,可以为人们提供一个良好的居住环境,但犯罪事件时有发生 ,犯罪形式更是多种多样,如何行之有效的管理及监控不法分子,是相关管理人员考虑的头等大事。
在重点路段、街道部署监控摄像机,对刑事案件的侦破提供了更多依据,能够有效的减少犯罪事件的发生。大数据、云计算的应用,针对海量监控资料进行智能分析,有效的分析犯罪事件的多发地点、多发时间,弥补监控系统的空白区域,争取做到零死角监控,减少犯罪事件的发生,保障大家的安全。
大数据、云存储的相继应用,对于安防监控行业发展意义重大,云存储不仅可以有效的存储大量数据,还能通过智能化分析,为各行各业提供数据支撑。在未来,大数据、云存储在智慧城市、物联网、智慧医疗、智能交通领域,一定会大放异彩。大数据、云存储的时代已经来临,云安防还会远么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10