
大数据能否终结老鼠仓时代
维克托·迈尔舍恩伯格在他的《大数据时代》一书中写道:“大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道‘是什么’,而不需要知道‘为什么’。”
颇有些戏谑的是,“大数据”在中国证券市场上的应用,并不是在投资交易领域的应用,而是以“捕鼠”为开端,博时基金的马乐第一个被“捕鼠神器”逮住。
交易所在掌握了“大数据”利器后,意味着海量的交易数据被持续的跟踪和分析,用以发现“相关关系”。那么,基金经理“老鼠仓”时代是否就此宣告终结?
至少可以确定的是,以往案例中传统的、明目张胆的老鼠仓行为将在大数据面前无所遁形,并且会很快被侦测出来,这将大大提高老鼠仓的操作难度,减少老鼠仓行为的发生。但就此断言大数据将终结一切老鼠仓,亦为时尚早。
解密交易所“大数据”
一般而言,“大数据”是指不用随机分析法(抽样调查)这样的捷径,而采用“所有数据”的方法,对海量数据进行分析。“大数据”具有“4V”特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
据悉,沪深交易所的大数据监测系统从建立到完善,已经有几年的时间。即在国内“大数据”概念还不太为人所知的时候,交易所已经走在前列,从国外引进了大数据技术。但由于这样的监测系统并不对外开放,所以在“马乐案”前,业界知之甚少。
即使到目前,交易所掌握的大数据工具,其模型和运作(计算)方式也依然只能被勾画出一个轮廓。相关信息显示,在交易所依法设立的证券交易监控系统中,上交所异动指标分为4大类、72项,敏感信息分为3级共11大类、154项;深交所则建立了9大报警指标体系,合计204个具体项目。
深交所总经理宋丽萍在2013年3月间的一次公开发言中亦透露,交易所有“几十人的监控室,设置了200多个指标用于监测估算”,这在相当程度上印证了上述监控系统参数设置的真实性。
马乐是如何“现形”的?
交易所的大数据工具昼夜不知疲倦的对海量交易数据进行分析和比对,这改变了以往发现老鼠仓“现形”的模式——在“前大数据时代”,大部分老鼠仓是通过“举报”被发现,交易所处于较为被动的角色。但进入“大数据时代”后,交易所则是通过主动的数据挖掘来发现老鼠仓。
马乐案即是交易所主动挖掘的结果。
深交所监管部门在日常监控时发现一个10亿元账户重仓的小盘股和马乐掌管的“博时精选”高度重合。进一步追查发现,一个3000万的账户亦是如此,交易所随即上报证监会并立案。
有数据分析专家向记者解析,交易所挖掘的数据就是交易数据,因此非常容易采集,这是很适合应用大数据工具的。在数据引用后,就进入“数据索引”或称“模型搭建”的阶段,通常将四个因素,即价格、成交量、时间、空间进行量化分析,整个数据处理过程是自动的,包括“自动关联、自动聚类、自动分类、自动重排”的快速计算。
具体而言,马乐“老鼠仓”的操作中,其频繁进出中小板和创业板个股,很容易被系统监测到与博时精选的“关联性”,系统也会自动将其账户归类。因此交易所只要进一步分析这些操作的时间差,就不难将“老鼠仓”抓获。
而到了这一阶段,交易数据层面的证据也已经相当确凿,再辅之对账户资金来源的调查,“老鼠仓”行为根本没有任何辩驳的空间。
老鼠仓时代已经终结了吗?
大数据工具的出现,意味着老鼠仓时代的终结吗?
从基金经理行为层面分析,老鼠仓此前之所以频繁发生,很重要的原因在于这种行为本身的违法成本过于低廉,在“低风险、高收益”的情况下,基金经理面临巨大的诱惑,有足够的动力进行违法违规行为。而大数据工具的存在,使得“老鼠仓”行为被发现的概率极大提高,导致违法成本巨幅增加,其震慑力不言而喻。
但就此断言“老鼠仓”时代已经终结,则或许过于绝对。
与真正意义上需要借助于“云计算”的“大数据”处理不同的是,目前业界所称的交易所“大数据”是对交易所一系列监察系统口语化的统称。有数据分析专家指,从这个层面上来说,交易所“大数据”实际上是一整套监测模型,其数据架构方式、数据计算比对的逻辑过程等是模型的核心,这套系统对传统的老鼠仓模式几乎是可以做到“见血封喉”,但不排除将来出现更“智慧”的违法者,“绕道”系统监测的领域,或者以更复杂的交易模式来躲过系统的监测,也未可知。因此只能说,大数据终结了以往“老鼠仓”的“草莽”时代,再以传统手法行事已行不通,但“后大数据时代”的猫鼠之战,或许只是刚刚开始。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10