
企业大数据规划需要的三种能力和五个步骤
大数据规划有五个步骤,首先从业务驱动的角度,相关部门选择要解决和产生的业务场景。针对需求处理和采取整合这些场景需要的大数据。当然选择的重点是怎么使信息快速产生价值。
数据分析的未来将朝着更为普及化、更为实时的数据分析去迈进,也就是说“针对正确的人,在正确的时间,获得正确的信息”,从这个意义来说,它已经超越了技术本身,是更为接近业务层面的实时分析。
对于一个成功企业来说,数据整合能力、分析能力和行动能力不可或缺。如果不具备完善的数据整合、分析和行动能力的企业迟早面临被淘汰的风险。在经营环境发生巨变的情况下,任何企业都必须在大数据规划上做好准备,这样才能抢先竞争对手发现市场新的趋势。
三种能力
我们建议企业和政府机构进行数据整合能力、分析能力和行动能力的建设。对于任何公司的管理层来说,要充分认识到数据的重要性,在管理层充分认识到数据的重要性之后,内部要有足够的人员和能力去整合、搭建和完善数据管理基础架构。有了海量数据之后,数据分析师能够对其进行分析和挖掘,使其产生理想的价值。
数据分析能力通过一定的方法论可以获得。这个方法论从宏观的角度来看,是通过数据整合探索出有效的业务价值,进而精确地协助制定商业策略或服务提升的策略,有效地采取正确的行动,来协助业务和服务质量的增长,或是解决业务已知、不确定或发现未知的问题。
另外,数据要实现普及化,不仅掌握在管理层手中,在数据安全和权限管理的机制下,企业或单位的每一个人都要了解自己的业务具体发生了什么,为何发生,预测将要发生什么情况,从而更快、更好地做出决策,最终达到智慧型的管理,通过一些主动式的事件,产生正确的行动,如业务增长的价值措施和办法,来精确有效地提升业务的增长。
五个步骤
如今大数据已经远远超出了IT的范畴,也就是说所有部门都在大数据运用的范畴中。
大数据规划有五个步骤,首先从业务驱动的角度,相关部门选择要解决和产生的业务场景。针对需求处理和采取整合这些场景需要的大数据。当然选择的重点是怎么使信息快速产生价值。场景因需求不同而包罗万象:例如企业在精确营销方面提升业务增长,对于其客户在购买哪些产品前的黄金路径统计分析等等。
其次,直接产生的价值需要与已有的客户关系管理、客户交易等数据进行结合和关联,从而为企业产生总体的关键价值效益。例如,哪些用户在购买前确实通过上述统计总结的黄金路径,而这些用户和该企业的历史关系为何,以提供企业下一步精确行动的优先顺序等等。
第三,整个企业要建立大数据分析的支持体系、分析的文化、分析数据的人才,彻底形成企业对大数据的综合管理、探索、共识。大数据能力的建设是企业或政府单位内上下及跨部门就如何提供更加智慧型服务和产品给用户的议题。
第四,随着大数据探索范围的扩大,企业要建立大数据的标准,统一数据格式、采集方法、使用方式,设定一个共享的愿景和目的,然后按照阶段化的目标去实现愿景。例如,有关数据的存储和处理长期围绕在关系型的结构数据中,提供更加智慧型服务和产品是需要结合过去难以处理分析的数据,如文本、图像等等。数据内容快速演变,因此对数据的标准、格式、采集、工具、方法等的治理能力必须与时俱进。
第五,最终建成企业或政府单位内的“统一数据架构”,从各类所需的多元的结构化数据源建立整合能力(采集、存储、粗加工)。在此基础上,建设数据探索和分析能力(从整合出来的海量数据里快速探索出价值),之后如何有效、实时、精确地与已有的业务数据结合,产生精确的业务行动能力(进行更深度的利用和提供更智慧型的服务),从而达到“针对正确的人,在正确的时间,正确的方式,提供正确的信息”的目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10