京公网安备 11010802034615号
经营许可证编号:京B2-20210330
非数据科学家如何进行数据分析
到2018年,大多数业务人员和分析师都将通过自助式BI工具来准备和分析大数据。虽然目前国内的发展现状无法在2018年达到自助式分析的局面,但这一趋势无法否认。即便不是数据科学家,但仍然可以轻松地分析数据,从中获取价值,才是大数据的正确打开方式。
大数据战略成功的关键是什么?
大数据战略成功的关键是从一开始就有一个明确的目标。如今公司收集和存储的数据量是难以想象得庞大,但这些数据的影响力是什么,公司如何从这些数据中获取价值,进而推动业务成功呢?
此外,公司需要合适的工具,帮助企业实现数据对所有人可见可用。如果只是对IT部门可见,数据的价值并不能真正地发挥出来,通过使数据对所有员工易于访问,公司可以进一步定义目标,并确定适当的数据来支持这些工作。
过去一年大数据发生了哪些变化?
大数据技术现在在任何地方都可用,并且用户很容易访问。自助式服务解决方案的兴起使公司能够以新的方式接受数据,并真正实施数据驱动战略。例如国外的Sisense,通过转向人工智能和物联网技术将数据洞察人性化,这些技术将数据带入员工自然工作环境的生活。
使用哪些技术或解决方案收集和分析数据?
在收集和分析数据方面,公司最好是先评估想要解决的业务挑战,然后着手评估具体的解决方案。重要的是确保选择一种可复制复杂数据的技术,应对多个来源的大型的不同数据集,因为这才是当今公司面临的挑战。
哪些因素阻止公司实现大数据?
两个最常抑制公司实现数据潜力的问题,一是无法动态连接不同的数据源,如果数据都以孤岛方式呈现,这些数据是无用的。二是需要不断的人工交互或手动处理不同数据源之间的数据连接。数据洞察需要运行一定程度的自动化,以便人们可以专注于更高层次的活动,并使用数据来驱动业务。
大数据发展的最大机会在哪里?
随着大数据的不断发展,数据的进一步传播将至关重要。公司需要打破大数据仅用于技术或执行团队的概念,将大数据,商业智能和分析技术带入全部员工队伍中。在数字时代,企业只会变得更加数据驱动,数据流畅性应该像阅读和写作一样具备易访问的性质。
开发人员需要具备哪些大数据技能?
大数据领域正在不断变化。我们看到了许多新的技术和创新,对于开发人员来说,不要期望完全掌握每种技术,也不应该因技术的不断发展而感到被威胁,应该对技术的发展感到兴奋!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04