
使用R进行逻辑回归 分类
逻辑回归模型
属于分类模型,二元分类器。类似的二元分类器还有决策树、随机森林、支持向量机以及神经网络。
逻辑回归模型相对于k-邻近模型,具有“运行时间”低的优势。 当数据空间很大时,预测新数据的类别需要计算这个数据点的k个“邻居”,因此需要把所有的新旧数据点都存在内存中,这通常会耗费大量的“运行时间”。而线性模型则不然,无论模型更新还是用作实际预测,它的速度通常都令人满意,线性模型的更新只涉及到新的数据,因此不需要把旧数据也放在内存中,这极大的提高了运行速度。一旦线性模型的参数估计完毕,只需要保存这些参数的估计值,预测新数据只涉及计算参数估计向量与新数据特征变量的点积问题。
在《数据科学实践》中,以M6D的真实案例进行研究来说明逻辑回归模型的内容。
要解决的问题:
根据用户鼠标点击屏幕中广告的情况,获取广告展示的点击率。分析商业模式、给定广告能够向目标用户展示,提供多大的价值?
解决思路:
选用什么样的数据来分析这个问题?如何使用模型来提高广告点击度?
一个用户访问广告就是记录一条URL字符串,那么,如果每个用户都这样表示,建立一个二维矩阵来表示全部用户访问历史。
矩阵的行代表用户,矩阵的列代表访问的网站。矩阵中的元素值为1表示用户访问过相应网站,元素值为0表示没有访问相应网站。
通过搭建模型、在数据集上训练模型。 逻辑回归的输出值是用户点击某个广告的概率值。
逻辑回归主要用到一个函数将数据转换为[0,1]之间的数值 Logit(P) = log(p) - log(1-p) , 其中P表示函数变量,的逻辑函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14