
大数据信息促进营销模式转型
大数据之父”维克托·迈尔舍恩伯格认为,世界的本质就是大数据。
仔细想来,确实如此。随着大数据时代悄然来临,数据不再是一个抽象的专业名词,它已经无孔不入地渗透到我们生活的方方面面。
每当飓风来临之前,美国沃尔玛都会将手电筒和蛋挞摆在一起出售,这是因为通过对沃尔玛的多维数据分析发现,季节性飓风到来之前,手电筒和蛋挞的销量都会大幅增加,飓风、手电筒、蛋挞之间有着一种神奇的联系;利用价格调整软件,零售商可以在一小时内自动修改200万件商品的价格,这是基于竞争对手价格和销售额等因素的一种动态定价机制;澳大利亚数字户外广告公司通过安装在数字户外媒体上的受众测量设备来实时采集受众的信息,当测出此时的观看人为女性,后台中针对女性用户且给出最高广告费的广告将自动播放。
本书中提到的上述案例都是基于大数据的渠道、定价和广告创新。作为一本关于大数据营销的教科书,不同于以往教材中只有枯燥晦涩的理论,本书每一章节都配有生动的经典案例,范围涉及众多不同领域的领先公司,展示了诸如腾讯、IBM、沃尔玛等巨头公司在大数据营销中最具价值的应用案例。通过对这些案例的详尽分析,帮助读者更好地理解大数据营销的运作理念和方法。
那么,我们为什么要了解大数据?大数据究竟能给营销带来哪些变革?
信息技术的创新推动着思维模式的变革,大数据带来的信息风暴开启了营销模式的转型。麦肯锡全球研究院在五年前发布的一份研究报告《大数据:创新、竞争和生产力的下一个新领域》指出,数据已经渗透到当今每一个行业和业务职能领域,成为日益重要的生产因素;而人们对于海量数据的运用预示着新一波生产率增长和消费者盈余浪潮的到来。
对于市场营销来说,大数据可以帮助品牌发现机遇(新客户、新市场、新规律和新策略),回避风险和潜在威胁,同时也有助于品牌营销决策的调整与优化。因此,如何利用大数据技术实现更大的营销价值和效果,是值得不断思考和探索的领域。
本书作者阳翼十余年来潜心于营销领域,做了大量前瞻性的研究工作,有着丰富的理论功底和实践经验。不仅在传统营销领域颇有建树,对于大数据时代的新营销也有着独到的见解,在广告、市场、数字营销等方面提出了诸多有价值的观点。相信本书能为高校广告、营销专业的学生及相关研究人员、从业人士打开一扇洞察大数据营销的窗口,同时在变革思维方式、培养大数据思维等方面带来启迪。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10