京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于数据库安全及其防范方案的分析
随着网络的不断发展,数据的共享日益加强,数据的安全保密越来越重要。为了计算机数据库整体安全性的控制,需要做好很多细节性的工作,并根据具体应用环境的安全需要来分析安全薄弱环节,并制定统一的安全管理策略加以实施,以保证其最高的安全性。
1.数据库安全环境的分析
随着时代的发展,我国的计算机信息安全标准也在不断提升。在当下的数据库系统安全控制模块中,我国数据库安全分为不同的等级。但是总体来说,我国的数据库安全性是比较低的,这归结于我国数据技术体系的落后。为了更好的健全计算机数据库体系,进行数据库安全体系的研究是必要的。我国现有的一系列数据安全理论是落后于发达国家的。这体现在很多的应用领域,比如电力领域、金融领域、保险领域等。很多软件都是因为其比较缺乏安全性而得不到较大范围的应用,归根结底是数据库安全性级别比较低。
为了满足现阶段数据库安全工作的需要,进行相关标准的深化研究是必要的。这需要对数据库安全进行首要考虑,且需要考虑到方方面面,才更有利于数据库保密性的控制,从而保证这些数据存储与调用的一致性。
在当前数据库安全控制过程中,首先需要对这些数据进行可用性的分析,从而有利于避免数据库遭到破坏,更有利于进行数据库的损坏控制及其修复。其次为了保证数据库的安全性、效益性,也离不开对数据库整体安全性方案的应用。最后必须对数据库进行的一切操作进行跟踪记录,以实现对修改和访问数据库的用户进行追踪,从而方便追查并防止非法用户对数据库进行操作。
2.数据库安全策略的更新
为了满足现阶段数据库安全性方案的应用,进行身份的鉴别是必要的。所谓的身份鉴别就是进行真实身份及其验证身份的配比,这样可以避免欺诈及其假冒行为的发生。身份鉴别模式的应用,表现在用户使用计算机系统进行资源访问时。当然在一些特定情况下,也要进行身份鉴别,比如对某些稀缺资源的访问。
身份鉴别通常情况下可以采用以下三种方法:一是通过只有被鉴别人自己才知道的信息进行鉴别,如密码、私有密钥等;二是通过只有被鉴别人才拥有的信物进行鉴别,如IC 卡、护照等;三是通过被鉴别人才具有的生理或者行为特征等来进行鉴别,如指纹、笔迹等。
在当前访问控制模块中,除了进行身份鉴别模式的应用外,还需要进行信息资源的访问及其控制,这样更有利于不同身份用户的权限分配。这就需要进行访问级别的控制,针对各个系统的内部数据进行操作权限的控制,进行自主性及其非自主性访问的控制,满足数据库的安全需要。实现用户对数据库访问权限进行控制,让所有的用户只能访问自己有权限使用的数据。当某一个用户具有对某些数据进行访问的权限时,他还可以把对这些数据的操作权限部分或者全部的转移给其他用户,这样其他的用户也获得了对这些数据的访问权。
为了更好的进行数据库的安全管理,审计功能的应用也必不可少。这需要就数据库的数据进行统一性的操作。这样管理员更加方便对数据库应用情况进行控制,审计功能也有利于对数据库的操作行为进行控制,更有利于控制用户对数据库的访问。攻击检测是通过升级信息来分析系统的内部和外部所有对数据库的攻击企图,把当时的攻击现场进行复原,对相关的攻击者进行处罚。通过这种方法,可以发现数据库系统的安全隐患,从而来改进以增加数据库系统的安全性。
在数据库数据处理过程中,可以进行一些合法查询模式的应用,当需要调取保密数据时,就需要应用推理分析模块。这是数据库安全性方案控制过程中的重难点,而通过这种简单的推理分析方法调取保密数据,是得不到有效解决的。但是我们可以使用以下几种方法来对这种推理进行控制:数据加密的基本思想就是改变符号的排列方式或按照某种规律进行替换,使得只有合法的用户才能理解得到的数据,其他非法的用户即使得到了数据也无法了解其内容。
通过对加密粒度的应用,更有利于进行数据库加密性的控制。其分为几种不同的应用类型等级。在当前应用模块中,需要进行数据保护级别的分析,进行适当的加密粒度的分析。更有利于满足数据库级别加密的需要。该加密技术的应用针对的是整体数据库,从而针对数据库内部的表格、资料等加密。采用这种加密粒度,加密的密钥数量较少,一个数据库只需要一个加密密钥,对于密钥的管理比较简单。但是,由于数据库中的数据能够被许多的用户和应用程序所共享,需要进行很多的数据处理,这将极大的降低服务器的运行效率,因此这种加密粒度只有在一些特定的情况下才使用。
表级加密也是比较常用的方法,这种方法应用于数据库内部的数据加密。针对具体的存储数据页面进行加密控制。这对于系统的运行效率的提升具备一定的帮助,不会影响系统的运行效率。这种方法需要应用到一些特殊工具进行处理,比如解释器、词法分析器等,进行核心模块的控制,进行数据库管理系统源代码的控制及其优化。但是其难以确保数据库管理系统的整体逻辑性,也存在缺陷。记录级加密;这种加密技术的加密粒度是表格中的每一条记录,对数据库中的每一条记录使用专门的函数来实现对数据的加密、解密。通过这种加密方法,加密的粒度更加小巧,具有更好的选择性和灵活性。字段级加密;这种加密技术的加密粒度是表格中的某一个或者几个字段。通过字段级的加密粒度只需要对表格中的敏感列的数据进行加密,而不需要对表格中的所有的数据进行加密。
选择加密算法也是比较常见的数据加密方法。它是数据加密的核心部分。对于数据库的整体安全性的控制具有直接性的影响。通过对加密算法的分析,得知其分为公共密钥加密及其对称加密。在数据加密模块中,需要进行密文及其明文的区分,从而进行明文及其密文的转换,也就是普遍意义上的密码。密码与密钥是两个不同的概念。后者仅是收发双方知道的信息。在数据加密技术中,对密钥进行管理主要包括以下几个方面,产生密钥。产生怎样的密钥主要取决于使用什么样的算法。若产生的密钥强度不一样就称这种算法实现的是非线性的密钥空间,若产生的密钥强度一样就称这种算法实现的是线性的密钥空间。分配密钥、传递密钥:分配密钥就是产生一个密钥并且将这个密钥分配给某个用户使用的过程。
密钥的传递分为不同的应用形式,集中式与分散式。所谓的集中式就是进行密钥整体式的传递;所谓的分散式就是对密钥的多个部分进行划分,以秘密的方法给用户进行传递。通过将整体方法与分散方法应用到存储模块中,更好的满足现阶段数据库整体安全性的需要。对于密钥的备份可以使用和对密钥进行分散存储一样的方式进行,以避免太多的人知道密钥;而销毁密钥需要有管理和仲裁机制,以防止用户对自己的操作进行否认。
3.结束语
随着计算机,特别是网络的不断发展,数据的共享日益加强,数据的安全保密越来越重要。本文详细阐述了数据库的安全防范,分别从数据分析、用户鉴别、访问权限控制、审计、数据加密等环节逐一剖析数据库安全。为了计算机数据库整体安全性的控制,需要做好很多细节性的工作,并根据具体应用环境的安全需要来分析安全薄弱环节,并制定统一的安全管理策略加以实施,以保证其最高的安全性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27