
R语言实施皮尔森卡方检验
检查两个数据集中的类别分量是否不同,在统计中会碰到离散型数据与计数数据,比如性别分男、女,某个问题的态度分为赞成、反对,成绩可分优良差,能力可分高中低。对这类数据的统计处理的假设检验一般用计数数据的统计方法进行非参数检验。
卡方检验主要用于两个方面,一是对总体分布进行拟合性检验,检验观查次数是否与某种理论次数相一致。
二是独立性检验,用于检验两组或者多组资料相互关联还是彼此独立。
操作示例(独立性检验)
#mtcars$am有0,1两个因素表示行,mtcars$gear 有3,4,5三个因素表示列
library(stats)
data("mtcars)
ftable = table(mtcars$am,mtcars$gear)
ftable = table(mtcars$am,mtcars$gear)
ftable = table(mtcars$am,mtcars$gear)
> ftable
3 4 5
0 15 4 0
1 0 8 5
#绘制列联表的马赛克图
mosaicplot(ftable,main ="number of forward gears within automatic and manual cars",color = TRUE )
对列联表执行卡方检验,以检测自动档与手动档汽车前驱的齿轮数目是否相同:
chisq.test(ftable)
Pearson's Chi-squared test
data: ftable
X-squared = 20.945, df = 2, p-value = 2.831e-05
Warning message:
In chisq.test(ftable) : Chi-squared近似算法有可能不准
总结
卡方检验用于发现两个类别变量之间是否存在某种关联,最适用于数组中非成组信息的检验。使用条件:1.数据都为类别数据2.变量包括两个或者两个以上独立数据组。
H0:变量A与变量B相互独立(gear数目相同)
H1:变量A与变量B相互不独(gear数目不相同)
由图知:自动档的gear要小于手动档的gear.p-value<0.05,拒绝H0,接收H1.
样例输出了一个警告信息,此次卡方检验的结果可能不正确,这是因为列联表的个数小于5
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10