
数据挖掘核心算法之一--回归
回归,是一个广义的概念,包含的基本概念是用一群变量预测另一个变量的方法,白话就是根据几件事情的相关程度,用其中几件来预测另一件事情发生的概率,最简单的即线性二变量问题(即简单线性),例如下午我老婆要买个包,我没买,那结果就是我肯定没有晚饭吃;复杂一点就是多变量(即多元线性,这里有一点要注意的,因为我最早以前犯过这个错误,就是认为预测变量越多越好,做模型的时候总希望选取几十个指标来预测,但是要知道,一方面,每增加一个变量,就相当于在这个变量上增加了误差,变相的扩大了整体误差,尤其当自变量选择不当的时候,影响更大,另一个方面,当选择的俩个自变量本身就是高度相关而不独立的时候,俩个指标相当于对结果造成了双倍的影响 ),还是上面那个例子,如果我丈母娘来了,那我老婆就有很大概率做饭;如果在加一个事件,如果我老丈人也来了,那我老婆肯定会做饭;为什么会有这些判断,因为这些都是以前多次发生的,所以我可以根据这几件事情来预测我老婆会不会做晚饭。
大数据时代的问题当然不能让你用肉眼看出来,不然要海量计算有啥用,所以除了上面那俩种回归,我们经常用的还有多项式回归,即模型的关系是n阶多项式;逻辑回归(类似方法包括决策树),即结果是分类变量的预测;泊松回归,即结果变量代表了频数;非线性回归、时间序列回归、自回归等等,太多了,这里主要讲几种常用的,好解释的(所有的模型我们都要注意一个问题,就是要好解释,不管是参数选择还是变量选择还是结果,因为模型建好了最终用的是业务人员,看结果的是老板,你要给他们解释,如果你说结果就是这样,我也不知道问什么,那升职加薪基本无望了),例如你发现日照时间和某地葡萄销量有正比关系,那你可能还要解释为什么有正比关系,进一步统计发现日照时间和葡萄的含糖量是相关的,即日照时间长葡萄好吃,另外日照时间和产量有关,日照时间长,产量大,价格自然低,结果是又便宜又好吃的葡萄销量肯定大。再举一个例子,某石油产地的咖啡销量增大,国际油价的就会下跌,这俩者有关系,你除了要告诉领导这俩者有关系,你还要去寻找为什么有关系,咖啡是提升工人精力的主要饮料,咖啡销量变大,跟踪发现工人的工作强度变大,石油运输出口增多,油价下跌和咖啡销量的关系就出来了(单纯的例子,不要多想,参考了一个根据遥感信息获取船舶信息来预测粮食价格的真实案例,感觉不够典型,就换一个,实际油价是人为操控地)。
回归利器--最小二乘法,牛逼数学家高斯用的(另一个法国数学家说自己先创立的,不过没办法,谁让高斯出名呢),这个方法主要就是根据样本数据,找到样本和预测的关系,使得预测和真实值之间的误差和最小;和我上面举的老婆做晚饭的例子类似,不过我那个例子在不确定的方面只说了大概率,但是到底多大概率,就是用最小二乘法把这个关系式写出来的,这里不讲最小二乘法和公式了,使用工具就可以了,基本所有的数据分析工具都提供了这个方法的函数,主要给大家讲一下之前的一个误区,最小二乘法在任何情况下都可以算出来一个等式,因为这个方法只是使误差和最小,所以哪怕是天大的误差,他只要是误差和里面最小的,就是该方法的结果,写到这里大家应该知道我要说什么了,就算自变量和因变量完全没有关系,该方法都会算出来一个结果,所以主要给大家讲一下最小二乘法对数据集的要求:
1、正态性:对于固定的自变量,因变量呈正态性,意思是对于同一个答案,大部分原因是集中的;做回归模型,用的就是大量的Y~X映射样本来回归,如果引起Y的样本很凌乱,那就无法回归
2、独立性:每个样本的Y都是相互独立的,这个很好理解,答案和答案之间不能有联系,就像掷硬币一样,如果第一次是反面,让你预测抛两次有反面的概率,那结果就没必要预测了
3、线性:就是X和Y是相关的,其实世间万物都是相关的,蝴蝶和龙卷风(还是海啸来着)都是有关的嘛,只是直接相关还是间接相关的关系,这里的相关是指自变量和因变量直接相关
4、同方差性:因变量的方差不随自变量的水平不同而变化。方差我在描述性统计量分析里面写过,表示的数据集的变异性,所以这里的要求就是结果的变异性是不变的,举例,脑袋轴了,想不出例子,画个图来说明。(我们希望每一个自变量对应的结果都是在一个尽量小的范围)
我们用回归方法建模,要尽量消除上述几点的影响,下面具体讲一下简单回归的流程(其他的其实都类似,能把这个讲清楚了,其他的也差不多):
first,找指标,找你要预测变量的相关指标(第一步应该是找你要预测什么变量,这个话题有点大,涉及你的业务目标,老板的目的,达到该目的最关键的业务指标等等,我们后续的话题在聊,这里先把方法讲清楚),找相关指标,标准做法是业务专家出一些指标,我们在测试这些指标哪些相关性高,但是我经历的大部分公司业务人员在建模初期是不靠谱的(真的不靠谱,没思路,没想法,没意见),所以我的做法是将该业务目的所有相关的指标都拿到(有时候上百个),然后跑一个相关性分析,在来个主成分分析,就过滤的差不多了,然后给业务专家看,这时候他们就有思路了(先要有东西激活他们),会给一些你想不到的指标。预测变量是最重要的,直接关系到你的结果和产出,所以这是一个多轮优化的过程。
第二,找数据,这个就不多说了,要么按照时间轴找(我认为比较好的方式,大部分是有规律的),要么按照横切面的方式,这个就意味横切面的不同点可能波动较大,要小心一点;同时对数据的基本处理要有,包括对极值的处理以及空值的处理。
第三, 建立回归模型,这步是最简单的,所有的挖掘工具都提供了各种回归方法,你的任务就是把前面准备的东西告诉计算机就可以了。
第四,检验和修改,我们用工具计算好的模型,都有各种假设检验的系数,你可以马上看到你这个模型的好坏,同时去修改和优化,这里主要就是涉及到一个查准率,表示预测的部分里面,真正正确的所占比例;另一个是查全率,表示了全部真正正确的例子,被预测到的概率;查准率和查全率一般情况下成反比,所以我们要找一个平衡点。
第五,解释,使用,这个就是见证奇迹的时刻了,见证前一般有很久时间,这个时间就是你给老板或者客户解释的时间了,解释为啥有这些变量,解释为啥我们选择这个平衡点(是因为业务力量不足还是其他的),为啥做了这么久出的东西这么差(这个就尴尬了)等等。
回归就先和大家聊这么多,下一轮给大家聊聊主成分分析和相关性分析的研究,然后在聊聊数据挖掘另一个利器--聚类。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30