京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人人都应学会的4个数据分析思路
数据分析能力对于一名产品经理来说是最基本的能力。
在面试的过程中,社招会有面试官会问你以往你负责的产品的相关数据,如何看待这些数据,如何通过这些数据来做接下来的产品优化;校招的面试官可能会问小伙伴们关于分析数据的思维;在产品经理的日常工作当中,要时长盯着数据的报表来分析产品的健康程度。本文不再对一些基本的数据定义再做描述,而是从分析的思路总结了一些心得,欢迎各位一起来讨论。
1.看数据的维度
在对一款产品或者一款产品的其中的一个模块进行分析时,我们可以从两个大维度去分析数据。
首先是从广阔的视角先去查看数据,这里需要对该产品所处的行业数据有一个清晰的了解,该产品所处的行业自己所处的市场占有率的排名,一般市场占有率指的是用户的占有量,一般从行业报告可以看出大概的数据。
然后接下来需要分析这款产品的总的数据情况,比如下载量、DAU、WAU、MAU等,以及该产品的最核心的数据是什么,并且如何有可能从侧面去了解这款产品的竞品的相关数据是什么。
当了解完以上这些总体的信息,我们心中应该对自己所负责的产品有了一个宏观的概念,自己在行业内所处的位置,以及现在最需要提升哪些数据指标都有了一个清晰的认识。接下来就可以从大纬度切入到小纬度,进一步去分析一些细节的数据。例如重要的数据信息,包括用户的基本的构成信息,每个模块自己建立的漏斗信息等。一般在做分析的时候应该注意的是数据的异常现象,出现局部的极值(包括极大值和极小值)都需要进行分析。
2.什么才是好的数据指标?
在做数据分析的过程中,我们需要了解什么样的数据才是好数据,如果单纯地去看一个数据是没有太大意义的,数据本身也具有相应的欺骗性,比如从运营同学那得到了日新增用户数1W,那么单纯看这个数据没有什么意义,我们可以说这个数据很好,因为看上去很大,但是你可能没有看到同期的数据,有可能昨天的数据达到了2W。
第一,好的数据一定是首先最好是以比率的形式存在的,不要绝对数,要相对数据。
比如上面的那个数据我们换成增长率,换成环比这个数据,我们就可以进一步的了解到这个数据的好坏。
第二,就是通过对比来判断数据的好坏。
我们将数据的日增长量做成一个折线图,从折线图我们就能看出这个数据是在高点还是在低点。通过对比,我们就会得知这个数据所处的位置是什么样的。另外,通过对比不同的渠道,对比不同的版本,对比不同的用户群等不同纬度的数据,都可以从侧面反映出这个数据的真实情况。
第三,数据不是一成不变的情况,要动态的去看数据。
单纯只看一个点的数据情况是没有意义的,我们要在数据中加入时间的纬度。引入一段单位的时间去看待数据整体的变化趋势,这样才能更为客观的判断产品的健康程度。
3.发现数据异常后如何分析?
有时候从总量的角度是无法洞察出一些问题的。比如在某段时间内,下载量出现了下跌,我们需要去找到这个当中问题出现在哪里。从总量的角度看,安卓的渠道要比IOS的总量大很多,这并不能说明问题。那么我们首先需要将时间的纬度引入到当中,将这几个月纬度的数据进行对比,一定可以看到在安卓当中有一个月份的数值相比其他较低。然后我们再去看这个月份的情况。一般情况下,在找到这个异常会先从渠道的角度去分析,查看是哪个渠道发生了异常的现象。在针对性的去对渠道进行优化。
然后我们还可以从版本的角度去分析,去查看最近近期是否有新版本的更新,如果有新版本的更新,是否设置了新的功能出现了BUG等问题无法解决,导致了用户出现卸载应用的情况。当然这些角度都要加入时间的纬度去判断。
另外,数据异常也不一定是坏事情。比如在分析用户行为的过程中,如果发现了某些类别的用户的关键指标表现良好,那么就一定要分析为什么这些用户的数据表现为什么十分良好,这也是增长黑客的分析思路。比如在facebook早期发现,如果一名用户在刚使用产品的早期可以快速添加10明好友以上的用户,这类的用户的活跃程度就明显高于其他的用户。在比如airbnb在早期发现那些放置的照片十分精美的住家的出租率较好,发现了这个特性后,内部产品技术团队又进行了一次AB测试,发现果然是存在这样的优化点。
所以在早期一个关键的指标就是如何能快速提高用户添加其他好友的数量。这里需要我们从底层数据分析当中要注意对用户进行分层的处理,从不同的纬度分层找到数据异常的族群,找到共性,归纳表现良好的用户的共性,然后将其作为优化的指标进行优化。
4.关键指标应随产品阶段性变化
在做数据分析的之前,需要我们对我们分析的目标进行确认,每个阶段的目标也存在着不同的目标,是为了增强用户粘性,还是为了提升营收,或者是为了提高病毒传播系数。
比如在对渠道的判断中,不能只关心拉过来的新用户量,最重要的是我们要关心这些新拉过来的用户对产品的关键指标的影响,比如在社区产品,相比新进用户的数量更应该关心这些用户的活跃度,发布帖子的数量,点赞的数量等关键指标。换句话说更应该关注的是漏斗模型最下方的那个量,关注转化率的最底层的那个数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27