京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下的银行是“不作不死
随着新技术的不断引入,银行业新的想象空间也在不断打开。大数据,无疑是去年以来最受热议的技术之一,它与互联网的深度融合,甚至能够让徘徊在银行门口之外的资本有了颠覆传统的豪气。
但有意思的现象是,相对保守的银行却一直甚少表露自己的真实想法。这个领域内对此说得最多的,反而不是做银行的。
有分析人士认为,大数据不可能颠覆现有的零售银行的格局。理由很简单,大数据之所以令新的互联网银行模式兴起,是因为它提升了一个群体的商业价值--以往不被重视的客户。
用长尾理论来解释,这些客户为数众多,但价值贡献却很小。新技术降低了这些客户的开发成本,但也仅此而已,因为最具价值的客户群体依然被银行牢牢掌握。
评论人士认为,银行是“不作不死”,即便市场策略最差的银行也只是没特点,要被新技术彻底颠覆很难,更遑论一百年以来银行的产品已经没有大的创新,所有的改革都在流程和服务方面。
随着银行业务的载体与社交媒体、电子商务的融合越来越紧密,仅对原有15%的结构化数据进行分析已经不能满足发展的需求。北京银行一位高管坦言,大数据应用可能对银行的一些观念和经营模式产生颠覆。
清华大学五道口金融学院一位专业人士表示,互联网时代海量的数据和分析工具,催生出很多新的金融业态,切入传统银行的禁地,“他们比传统银行有更强的数据收集和分析能力”.
梦想很远,现实却很紧迫。“中国国内银行还处在搭建推广手机银行、网上银行阶段,”相对于大数据已经慢了一拍。
银行业对大数据的挖掘创新似乎并不如互联网企业那么热衷,这其中既有传统行业理念的保守,也有制度上的掣肘。
“银行进行大数据挖掘,必然牵扯多方面,譬如观念转变、制度建设、流程优化、系统开发以及人才储备,等等。”一位股份制银行的信息管理人士说。
变革的开始往往是以测量手段的革命为前奏,为应对大数据挑战,银行应根据业务目的和特点在相应领域配置感知装置。
大数据时代是分析时代。以往中国的银行业过于强调资源的整合,在政企界限模糊、金融资源高度垄断的时代这种模式能够成功。
但时代在改变,随着金融市场化改革的进行,银行不再拥有独一无二的资源,它们整合什么?又如何敢说自己的整合力比竞争对手更强呢?
大数据分析的实质就是将客户放到更大的社会背景下加以曝光,准确定位环境中客户所处的位置符合怎样一种商业模式;到现在为止没有任何技术能超越人(对银行来说就是客户经理)更能对活生生的客户加以把握分析。
客户经理是最好的社会感知装置,同时又肩负将银行预定的熟悉的关系模式导入到现实社会网络,扩大关系的重任,这种独特的非技术感知装置是银行最大的优势。
以科技引领业务发展,未来银行也同样需要借助由大数据构建的企业经营全景视图来进行风险管理、产品营销、业务创新等活动,进而寻找最优的模式支持商业决策。
银行从业者应尽量客观地描述复杂的世界。我们不确定大数据是否一定能主宰未来,但是它描述客观世界的理念正是我们所探寻的有效提高银行业务水平之道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05