京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下的银行是“不作不死
随着新技术的不断引入,银行业新的想象空间也在不断打开。大数据,无疑是去年以来最受热议的技术之一,它与互联网的深度融合,甚至能够让徘徊在银行门口之外的资本有了颠覆传统的豪气。
但有意思的现象是,相对保守的银行却一直甚少表露自己的真实想法。这个领域内对此说得最多的,反而不是做银行的。
有分析人士认为,大数据不可能颠覆现有的零售银行的格局。理由很简单,大数据之所以令新的互联网银行模式兴起,是因为它提升了一个群体的商业价值--以往不被重视的客户。
用长尾理论来解释,这些客户为数众多,但价值贡献却很小。新技术降低了这些客户的开发成本,但也仅此而已,因为最具价值的客户群体依然被银行牢牢掌握。
评论人士认为,银行是“不作不死”,即便市场策略最差的银行也只是没特点,要被新技术彻底颠覆很难,更遑论一百年以来银行的产品已经没有大的创新,所有的改革都在流程和服务方面。
随着银行业务的载体与社交媒体、电子商务的融合越来越紧密,仅对原有15%的结构化数据进行分析已经不能满足发展的需求。北京银行一位高管坦言,大数据应用可能对银行的一些观念和经营模式产生颠覆。
清华大学五道口金融学院一位专业人士表示,互联网时代海量的数据和分析工具,催生出很多新的金融业态,切入传统银行的禁地,“他们比传统银行有更强的数据收集和分析能力”.
梦想很远,现实却很紧迫。“中国国内银行还处在搭建推广手机银行、网上银行阶段,”相对于大数据已经慢了一拍。
银行业对大数据的挖掘创新似乎并不如互联网企业那么热衷,这其中既有传统行业理念的保守,也有制度上的掣肘。
“银行进行大数据挖掘,必然牵扯多方面,譬如观念转变、制度建设、流程优化、系统开发以及人才储备,等等。”一位股份制银行的信息管理人士说。
变革的开始往往是以测量手段的革命为前奏,为应对大数据挑战,银行应根据业务目的和特点在相应领域配置感知装置。
大数据时代是分析时代。以往中国的银行业过于强调资源的整合,在政企界限模糊、金融资源高度垄断的时代这种模式能够成功。
但时代在改变,随着金融市场化改革的进行,银行不再拥有独一无二的资源,它们整合什么?又如何敢说自己的整合力比竞争对手更强呢?
大数据分析的实质就是将客户放到更大的社会背景下加以曝光,准确定位环境中客户所处的位置符合怎样一种商业模式;到现在为止没有任何技术能超越人(对银行来说就是客户经理)更能对活生生的客户加以把握分析。
客户经理是最好的社会感知装置,同时又肩负将银行预定的熟悉的关系模式导入到现实社会网络,扩大关系的重任,这种独特的非技术感知装置是银行最大的优势。
以科技引领业务发展,未来银行也同样需要借助由大数据构建的企业经营全景视图来进行风险管理、产品营销、业务创新等活动,进而寻找最优的模式支持商业决策。
银行从业者应尽量客观地描述复杂的世界。我们不确定大数据是否一定能主宰未来,但是它描述客观世界的理念正是我们所探寻的有效提高银行业务水平之道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28