
大数据下的银行是“不作不死
随着新技术的不断引入,银行业新的想象空间也在不断打开。大数据,无疑是去年以来最受热议的技术之一,它与互联网的深度融合,甚至能够让徘徊在银行门口之外的资本有了颠覆传统的豪气。
但有意思的现象是,相对保守的银行却一直甚少表露自己的真实想法。这个领域内对此说得最多的,反而不是做银行的。
有分析人士认为,大数据不可能颠覆现有的零售银行的格局。理由很简单,大数据之所以令新的互联网银行模式兴起,是因为它提升了一个群体的商业价值--以往不被重视的客户。
用长尾理论来解释,这些客户为数众多,但价值贡献却很小。新技术降低了这些客户的开发成本,但也仅此而已,因为最具价值的客户群体依然被银行牢牢掌握。
评论人士认为,银行是“不作不死”,即便市场策略最差的银行也只是没特点,要被新技术彻底颠覆很难,更遑论一百年以来银行的产品已经没有大的创新,所有的改革都在流程和服务方面。
随着银行业务的载体与社交媒体、电子商务的融合越来越紧密,仅对原有15%的结构化数据进行分析已经不能满足发展的需求。北京银行一位高管坦言,大数据应用可能对银行的一些观念和经营模式产生颠覆。
清华大学五道口金融学院一位专业人士表示,互联网时代海量的数据和分析工具,催生出很多新的金融业态,切入传统银行的禁地,“他们比传统银行有更强的数据收集和分析能力”.
梦想很远,现实却很紧迫。“中国国内银行还处在搭建推广手机银行、网上银行阶段,”相对于大数据已经慢了一拍。
银行业对大数据的挖掘创新似乎并不如互联网企业那么热衷,这其中既有传统行业理念的保守,也有制度上的掣肘。
“银行进行大数据挖掘,必然牵扯多方面,譬如观念转变、制度建设、流程优化、系统开发以及人才储备,等等。”一位股份制银行的信息管理人士说。
变革的开始往往是以测量手段的革命为前奏,为应对大数据挑战,银行应根据业务目的和特点在相应领域配置感知装置。
大数据时代是分析时代。以往中国的银行业过于强调资源的整合,在政企界限模糊、金融资源高度垄断的时代这种模式能够成功。
但时代在改变,随着金融市场化改革的进行,银行不再拥有独一无二的资源,它们整合什么?又如何敢说自己的整合力比竞争对手更强呢?
大数据分析的实质就是将客户放到更大的社会背景下加以曝光,准确定位环境中客户所处的位置符合怎样一种商业模式;到现在为止没有任何技术能超越人(对银行来说就是客户经理)更能对活生生的客户加以把握分析。
客户经理是最好的社会感知装置,同时又肩负将银行预定的熟悉的关系模式导入到现实社会网络,扩大关系的重任,这种独特的非技术感知装置是银行最大的优势。
以科技引领业务发展,未来银行也同样需要借助由大数据构建的企业经营全景视图来进行风险管理、产品营销、业务创新等活动,进而寻找最优的模式支持商业决策。
银行从业者应尽量客观地描述复杂的世界。我们不确定大数据是否一定能主宰未来,但是它描述客观世界的理念正是我们所探寻的有效提高银行业务水平之道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28