
SPSS非参数检验:单样本
一、概念:
单样本非参数检验使用一个或多个非参数检验识别单个字段中的差别。非参数检验不假定您的数据呈正态分布。非参数检验(Nonparametric tests)是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
二、目标(分析-非参数检验-单样本-目标)
您的目标是什么?目标允许您快速指定常用的不同检验设置。
2.1、自动比较观察数据和假设数据。该目标对仅具有两个类别的分类字段应用二项式检验,对所有其他分类字段应用卡方检验,对连续字段应用Kolmogorov-Smirnov检验。
2.2、检验随机序列。该目标使用游程检验来检验观察到的随机数据值序列。
2.3、自定义分析。当您希望手动修改“设置”选项卡上的检验设置时,选中此选项。注意,如果您随后在“设置”选项卡上更改了与当前选定目标不一致的选项,则会自动选择该设置。
三、选择检验(分析-非参数统计-单样本-设置-选择检验)
1、根据数据自动选择检验。该设置对仅具有两个有效(非缺失)类别的分类字段应用二项式检验,对所有其他分类字段应用卡方检验,对连续字段应用Kolmogorov-Smirnov检验。
2、自定义检验。这些设置允许您选择要执行的特定检验。
2.1、比较观察二分类可能性和假设二分类可能性(二项式检验)。二项式检验可以应用到所有字段。这将生成一个单样本检验,可以检验标记字段(只有两个类别的分类字段)的观察分布是否与指定的二项式分布期望相同。此外,您还可以请求置信区间。
2.2、比较观察可能性和假设可能性(卡方检验)。卡方检验可以应用到名义和有序字段。这将生成一个单样本检验,它可以根据字段类别的观察和期望频率间的差异来计算卡方统计量。
2.3、检验观察分布和假设分布(Kolmogorov-Smirnov检验)。Kolmogorov-Smirnov检验可以应用到连续字段。这将生成一个单样本检验,即字段的样本累积分布函数是否为齐次的均匀分布、正态分布、泊松分布或指数分布。
2.4、比较中位数和假设中位数(Wilcoxon符号秩检验)。Wilcoxon符号秩检验可以应用到连续字段。这将生成一个字段中位数值的单样本检验。指定一个数字作为假设中位数。
2.5、检验随机序列(游程检验)。游程检验可以应用到所有字段。这将生成一个单样本检验,即对分字段的值序列是否为随机序列。
四、二项式检验(分析-非参数统计-单样本-设置-选择检验-自定义检验-二项式检验)
二项式检验适用于标记字段(只有两个类别的分类字段),但可通过使用定义“成功”的规则应用到所有字段。在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。通常将这样的二值分别用1或0表示。如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。
1、假设比例。这指定了定义为“成功”的记录的期望比例,或p。指定一个大于0且
小于1的值。默认值为0.5。
2、置信区间。可以使用以下方法计算二分类数据的置信区间:◎Clopper-Pearson(精确)。基于累积二项式分布的精确区间。◎Jeffreys。基于p的后验分布且应用Jeffreys先验的Bayesian区间。◎似然比。基于p的似然函数的区间。
3、定义分类字段的成功。这可以指定如何为分类字段定义对照假设比例检验数据值的“成功”。◎使用在数据中找到的第一个类别将使用在样本中找到的第一个定义“成功”的值执行二项式检验。此选项仅适用于只有两个值的名义或有序字段;如果使用了此选项,则在“字段”选项卡中指定的所有其他分类字段都不会检验。这是默认值。◎指定成功值将使用指定以定义“成功”的值列表来执行二项式检验。可以指定字符串或数值列表。列表中的值不需要在样本中出现。
4、定义连续字段的成功值。这可以指定如何为连续字段定义对照检验值检验数据值的“成功”。成功被定义为等于或小于割点的值。◎样本中点在最小值和最大值的平均值上设置割点。◎自定义割点允许您为割点指定一个值。
五、卡方检验(分析-非参数统计-单样本-设置-选择检验-自定义检验-卡方检验)
卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。
1、所有类别具有相等的概率。这将在样本中的所有类别间生成均等的频率。这是默认值。
2、自定义期望可能性。这允许您为指定的类别列表指定不相等的频率。可以指定字符串或数值列表。列表中的值不需要在样本中出现。在类别列中,指定类别值。在相对频率列中,为每个类别指定一个大于0的值。自定义的频率被视为比率,例如,指定频率1、2和3等同于指定频率10、20和30,两者均指定了期望1/6的记录属于第一个类别,1/3的记录属于第二个类别,1/2的记录属于第三个类别。在指定自定义期望可能性时,自定义类别值必须包括数据中的所有字段值;否则将不对该字段执行检验。
六、单样本K-S检验(分析-非参数统计-单样本-设置-选择检验-自定义检验-K-S检验)
K-S检验方法能够利用样本数据推断样本来自的总体是否服从某一理论分布,是一种拟合优度的检验方法,适用于探索连续型随机变量的分布。例如,收集一批周岁儿童身高的数据,需利用样本数据推断周岁儿童总体的身高是否服从正态分布。再例如,利用收集的住房状况调查的样本数据,分析家庭人均住房面积是否服从正态分布。单样本K-S检验的原假设是:样本来自的总体与指定的理论分布无显著差异,SPSS的理论分布主要包括正态分布、均匀分布、指数分布和泊松分布等。
1、正态。使用样本数据使用观察到的均值和标准差;自定义允许您指定值。
2、均匀。使用样本数据使用观察到的最小值和最大值;自定义允许您指定值。
3、指数分布。样本均值使用观察到的均值;自定义允许您指定值。
4、泊松。样本均值使用观察到的均值;自定义允许您指定值。
七、游程检验(分析-非参数统计-单样本-设置-选择检验-自定义检验-游程检验)
变量值随机性检验通过对样本变量值的分析,实现对总体的变量值出现是否随机进行检验。它的原假设是:总体变量值出现是随机的。变量随机性检验的重要依据是游程。所谓游程是样本序列中连续出现相同的变量值的次数。可以直接理解,如果硬币的正反面出现是随机的,那么在数据序列中,许多个1或许多个0连续出现的可能性将不太大,同时,1和0频繁交叉出现的可能性也会较小。因此,游程数太大或太小都将表明变量值存在不随机的现象。
游程检验适用于标记字段(只有两个类别的分类字段),但可通过使用定义组的规则
应用到所有字段。
1、定义分类字段的组 ◎样本中仅有2个类别使用在定义组的样本中找到的值来执行游程检验。此选项仅适用于只有两个值的名义或有序字段;如果使用了此选项,则在“字段”选项卡中指定的所有其他分类字段都不会检验。◎将数据重新编码为2个类别使用指定以定义某个组的值列表来执行游程检验。样本中的所有其他值定义其他组。列表中的值不需要在样本中出现,但每个组中必须至少有一条记录。
2、定义连续字段的割点。这可以指定如何为连续字段定义组。第一组定义为等于或小于割点的值。◎样本中位数在样本中位数处设置割点。◎样本均值在样本均值处设置割点。◎自定义允许您为割点指定一个值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14