
用Python的pandas框架操作Excel文件中的数据教程
本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务。有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要。作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单,但在Excel中却很复杂的事情的。
有道理吧?让我们开始吧。
为某行添加求和项
我要介绍的第一项任务是把某几列相加然后添加一个总和栏。
首先我们将excel 数据 导入到pandas数据框架中。
import pandas as pd
import numpy as np
df = pd.read_excel("excel-comp-data.xlsx")
df.head()
我们想要添加一个总和栏来显示Jan、Feb和Mar三个月的销售总额。
在Excel和pandas中这都是简单直接的。对于Excel,我在J列中添加了公式sum(G2:I2)。在Excel中看上去是这样的:
下面,我们是这样在pandas中操作的:
df["total"] = df["Jan"] + df["Feb"] + df["Mar"]
df.head()
接下来,让我们对各列计算一些汇总信息以及其他值。如下Excel表所示,我们要做这些工作:
如你所见,我们在表示月份的列的第17行添加了SUM(G2:G16),来取得每月的总和。
进行在pandas中进行列级别的分析很简单。下面是一些例子:
df["Jan"].sum(), df["Jan"].mean(),df["Jan"].min(),df["Jan"].max()
(1462000, 97466.666666666672, 10000, 162000)
现在我们要把每月的总和相加得到它们的和。这里pandas和Excel有点不同。在Excel的单元格里把每个月的总和相加很简单。由于pandas需要维护整个DataFrame的完整性,所以需要一些额外的步骤。
首先,建立所有列的总和栏
sum_row=df[["Jan","Feb","Mar","total"]].sum()
sum_row
Jan 1462000
Feb 1507000
Mar 717000
total 3686000
dtype: int64
这很符合直觉,不过如果你希望将总和值显示为表格中的单独一行,你还需要做一些微调。
我们需要把数据进行变换,把这一系列数字转换为DataFrame,这样才能更加容易的把它合并进已经存在的数据中。T 函数可以让我们把按行排列的数据变换为按列排列。
df_sum=pd.DataFrame(data=sum_row).T
df_sum
在计算总和之前我们要做的最后一件事情是添加丢失的列。我们使用reindex来帮助我们完成。技巧是添加全部的列然后让pandas去添加所有缺失的数据。
df_sum=df_sum.reindex(columns=df.columns)
df_sum
现在我们已经有了一个格式良好的DataFrame,我们可以使用append来把它加入到已有的内容中。
df_final=df.append(df_sum,ignore_index=True)
df_final.tail()
你可以注意到,在进行了vlookup后,有一些数值并没有被正确的取得。这是因为我们拼错了一些州的名字。在Excel中处理这一问题是一个巨大的挑战(对于大型数据集而言)
幸运的是,使用pandas我们可以利用强大的python生态系统。考虑如何解决这类麻烦的数据问题,我考虑进行一些模糊文本匹配来决定正确的值。
幸运的是其他人已经做了很多这方面的工作。fuzzy wuzzy库包含一些非常有用的函数来解决这类问题。首先要确保你安装了他。
我们需要的另外一段代码是州名与其缩写的映射表。而不是亲自去输入它们,谷歌一下你就能找到这段代码code。
首先导入合适的fuzzywuzzy函数并且定义我们的州名映射表。
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
state_to_code = {"VERMONT": "VT", "GEORGIA": "GA", "IOWA": "IA", "Armed Forces Pacific": "AP", "GUAM": "GU",
"KANSAS": "KS", "FLORIDA": "FL", "AMERICAN SAMOA": "AS", "NORTH CAROLINA": "NC", "HAWAII": "HI",
"NEW YORK": "NY", "CALIFORNIA": "CA", "ALABAMA": "AL", "IDAHO": "ID", "FEDERATED STATES OF MICRONESIA": "FM",
"Armed Forces Americas": "AA", "DELAWARE": "DE", "ALASKA": "AK", "ILLINOIS": "IL",
"Armed Forces Africa": "AE", "SOUTH DAKOTA": "SD", "CONNECTICUT": "CT", "MONTANA": "MT", "MASSACHUSETTS": "MA",
"PUERTO RICO": "PR", "Armed Forces Canada": "AE", "NEW HAMPSHIRE": "NH", "MARYLAND": "MD", "NEW MEXICO": "NM",
"MISSISSIPPI": "MS", "TENNESSEE": "TN", "PALAU": "PW", "COLORADO": "CO", "Armed Forces Middle East": "AE",
"NEW JERSEY": "NJ", "UTAH": "UT", "MICHIGAN": "MI", "WEST VIRGINIA": "WV", "WASHINGTON": "WA",
"MINNESOTA": "MN", "OREGON": "OR", "VIRGINIA": "VA", "VIRGIN ISLANDS": "VI", "MARSHALL ISLANDS": "MH",
"WYOMING": "WY", "OHIO": "OH", "SOUTH CAROLINA": "SC", "INDIANA": "IN", "NEVADA": "NV", "LOUISIANA": "LA",
"NORTHERN MARIANA ISLANDS": "MP", "NEBRASKA": "NE", "ARIZONA": "AZ", "WISCONSIN": "WI", "NORTH DAKOTA": "ND",
"Armed Forces Europe": "AE", "PENNSYLVANIA": "PA", "OKLAHOMA": "OK", "KENTUCKY": "KY", "RHODE ISLAND": "RI",
"DISTRICT OF COLUMBIA": "DC", "ARKANSAS": "AR", "MISSOURI": "MO", "TEXAS": "TX", "MAINE": "ME"}
这里有些介绍模糊文本匹配函数如何工作的例子。
process.extractOne("Minnesotta",choices=state_to_code.keys())
('MINNESOTA', 95)
process.extractOne("AlaBAMMazzz",choices=state_to_code.keys(),score_cutoff=80)
现在我知道它是如何工作的了,我们创建自己的函数来接受州名这一列的数据然后把他转换为一个有效的缩写。这里我们使用score_cutoff的值为80。你可以做一些调整,看看哪个值对你的数据来说比较好。你会注意到,返回值要么是一个有效的缩写,要么是一个np.nan
所以域中会有一些有效的值。
def convert_state(row):
abbrev = process.extractOne(row["state"],choices=state_to_code.keys(),score_cutoff=80)
if abbrev:
return state_to_code[abbrev[0]]
return np.nan
把这列添加到我们想要填充的单元格,然后用NaN填充它
df_final.insert(6, "abbrev", np.nan)
df_final.head()
我们使用apply 来把缩写添加到合适的列中。
df_final['abbrev'] = df_final.apply(convert_state, axis=1)
df_final.tail()
我觉的这很酷。我们已经开发出了一个非常简单的流程来智能的清理数据。显然,当你只有15行左右数据的时候这没什么了不起的。但是如果是15000行呢?在Excel中你就必须进行一些人工清理了。
分类汇总
在本文的最后一节中,让我们按州来做一些分类汇总(subtotal)。
在Excel中,我们会用subtotal 工具来完成。
输出如下:
在pandas中创建分类汇总,是使用groupby 来完成的。
df_sub=df_final[["abbrev","Jan","Feb","Mar","total"]].groupby('abbrev').sum()
df_sub
然后,我们想要通过对data frame中所有的值使用 applymap 来把数据单位格式化为货币。
def money(x):
return "${:,.0f}".format(x)
formatted_df = df_sub.applymap(money)
formatted_df
格式化看上去进行的很顺利,现在我们可以像之前那样获取总和了。
sum_row=df_sub[["Jan","Feb","Mar","total"]].sum()
sum_row
Jan 1462000
Feb 1507000
Mar 717000
total 3686000
dtype: int64
把值变换为列然后进行格式化。
df_sub_sum=pd.DataFrame(data=sum_row).T
df_sub_sum=df_sub_sum.applymap(money)
df_sub_sum
最后,把总和添加到DataFrame中。
final_table = formatted_df.append(df_sub_sum)
final_table
你可以注意到总和行的索引号是‘0'。我们想要使用rename 来重命名它。
final_table = final_table.rename(index={0:"Total"})
final_table
结论
到目前为止,大部分人都已经知道使用pandas可以对数据做很多复杂的操作——就如同Excel一样。因为我一直在学习pandas,但我发现我还是会尝试记忆我是如何在Excel中完成这些操作的而不是在pandas中。我意识到把它俩作对比似乎不是很公平——它们是完全不同的工具。但是,我希望能接触到哪些了解Excel并且想要学习一些可以满足分析他们数据需求的其他替代工具的那些人。我希望这些例子可以帮助到其他人,让他们有信心认为他们可以使用pandas来替换他们零碎复杂的Excel,进行数据操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26