
大数据打开存储市场新空间
以大数据在全球的发展状态来看,可谓是风声水起,中国大数据发展的步伐也越来越快。虽然目前中国大数据市场还处在初级阶段,但发展迅猛,应用极其广泛,不管是云计算、物联网、智慧城市还是移动互联都要与大数据携手并进。
都说未来是数据为王的时代,大数据应用将会越来越广泛的落地在各个领域,大数据绝对是企业未来实现业务突破的重点。那么,到底大数据和存储有什么样的关系呢?
三大点囊括大数据需求
大数据就是大量的数据,人们用它来描述和定义信息爆炸时代产生的海量数大数据时代来临。那么,大数据到底有多大?有资料显示,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多;发出的社区帖子达200万个;卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万而到了2020年,全世界所产生的数据规模将达到今天的44倍……
事实上,大数据不仅是大,它的复杂性对于各行各业的企业而言都是一个头疼的问题。因为客户无法在一定时间内使用传统数据库软件工具对大数据内容进行抓取、管理和处理的数据集。几乎所有的企业都会关注在处理有意义的大数据之上。谈到这一点就一定要结合中国的大数据特点来看,正是因为这些特点促成了今天中国的行业客户面对大数据应用时的需求在一定程度上存在的共性。简而言之可以归结为以下三点:
首先,数据体量大,这些大型的数据集有可能会达到PB规模。
说到这个数据量级,人们首先会联想到学数字图书馆,高校数字图书馆或是国家数字图书馆可以说是开启了大数据时代PB级数据管理的一个典型案例。这要求信息基础架构平台能够动态地支持多重数据,满足人们对数字的不同性能要求、不同的容量要求,并且随时能够改变;需要有效地管理共享资源,存储资源按需分配,同时通过配额管理功能,以提高利用率。
其次,数据类别繁琐,囊括了半结构化和非结构化数据,从而促使客户需要借助智能工具,实现对所有类型数据的索引、搜索和发掘。最后,所有的这些大数据应用的需求,都能够为企业带来价值。虽然很多企业都拥有可用的、高质量的海量数据,但如何保护这些海量、非结构化的用户数据,并时时进行信息挖掘,给未来教育带来更大的可能,则对行业技术研究者的想象力提出了挑战。另一方面,数据是各个行业经营、管理和决策的重要基础,数据综合利用是近年来也是各行各业信息化建设的核心。使企业持续发展的数据业务建设提速,给各行业运营中心对数据进行集中处理提出了更高的要求,这也成为行业客户发展规划中的重要内容。
最后,安全性,自2005年,美国银行加密的磁带丢失,造成了大量客户资料泄露,从此以后,数据存储的安全性就一直受到人们的关注。随着云计算和大数据技术落地,大数据信息存储的安全性又一次被重视,各行各业客户同样面临着数据时代的挑战。
存储应对大数据多样需求
综上所述,各行各业对于大数据应用的需求、性能的关注、可靠性的要求,同时也是企业需要满足自身对于业务系统的需求,而基于存储对大数据的可管理性、高性能、容灾保护、资源整合和总体成本等方面的性能,几乎囊括了满足大数据多样需求的可能。
今天,随着“互联网+”时代的进程加速,信息化建设突飞猛进,数据信息量的快速增长的大数据时代,处理大数据的真谛就是利用存储在海量数据中淘金的过程。
那么,存储是如何应对数据需求增长的呢?
存储适用于各行的数据灵活方案
结合整个行业来看,存储能够帮助客户应对在医疗、生命科学、能源研究、社会基础设施等各领域的诸多挑战和需求。
首先,针对大数据的容量需求,利用针对结构化数据的虚拟存储平台是大数据处理的一个很好方案。可实现将其全部虚拟化,并将同一类型的硬盘(如SSD、SAS、SATA)重新“捆绑”在一起。针对结构化数据的存取动态分层技术。一定要“快”。可以根据数据被调用的频率,自动将常用的数据搬到最高层,提高效率。
其次,针对大数据最于难应对的非结构化数据,数据存储介质,大致经历几个阶段:较早以前是用光盘刻录数据,这种方式费时费力。[大数据魔方]后来,改用磁带库,成本低,存取也很快。如果磁带在磁带库中,每分钟可调取几百
M 数据,如果不在磁带库中,就要先找到磁带。但是今天,这些方案都不能满足客户业务的即时性和连续性需求。
最后,所有的大数据方案都是为了给客户带来大价值。虽然拥有庞大的数据,但是躺在那里睡觉的数据是没有任何价值的,只有盘活这些数据,才能体现出数据资产的价值。只有可利用的解决方案,才能充分发掘数据资产的价值。
目前,虽然中国大数据市场还处在初级阶段,但增速非常迅猛,应用也极其广泛,不管是云计算、物联网、智慧城市还是移动互联都要与大数据扯上关系。未来是数据为王的时代,大数据应用将会越来越广泛的落地在各个领域,而存储绝对是企业未来应用大数据实现业务突破的重要媒介。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10